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1 Introduction

The study of topological defects [1, 2] is important due to their mathematical properties

and connection to several areas of physics such as quark confinement [3–8], cosmology [9–

13] and condensed matter [14–18]. From the point of view of multidimensional spacetimes,

one can cite for instance the vortex [19] for superconductor physics in (2, 1) dimensions,

the magnetic monopole [20, 21] connected to cosmology in (3, 1) dimensions and brane

models [22–27] in general (D, 1) dimensions. The simplest example of a topological defect

is the kink [28], where the solution interpolates between two different vacua. The kink

is extended by the concept of branes with one extra dimension [29–39], where the brane

structure is a result of an action with a dynamical scalar field. The tentative of solving

the hierarchy and the constant cosmological problems with one extra dimension always

faced a fine-tuning problem [22–27]. Some attempts to evade this problem included to

consider more than one extra dimension. The literature has several interesting examples

of topological defects with larger codimension number. In 6 dimensions with codimension

2 one can cite gravity localization on strings [40–45] and baby-Skyrmion branes [46, 47].

Higher codimension topological defects are studied in [48–51].
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In general codimension-1 brane models can be easily treated using the first-order for-

malism [29]. In such cases the scalar field potential and metric can be described by first-

order differential equations in terms of a function W called fake superpotential. This name

refers to the flat spacetime analog where a true superpotential is introduced to find BPS

states [52, 53]. The BPS formalism for some defects with radial symmetry constructed

with a scalar field was introduced in refs. [54, 55]. Recently, inspired in brane models with

codimension-2, such study was extended for the case of two coupled scalar fields in (3, 1)-

dimensions with the aim to investigate in absence of gravity resonances and localization

of particles with spin-0 [56] and spin-1/2 [57] in axial symmetric topological defects. Such

analysis has shown similar results with the previous works dealing with gravity and particle

localization and resonances [58–69] on branes with codimension 1.

In presence of gravity, the lack of a first-order formalism for brane-models with codi-

mension higher than 1 make the analysis of field localization and resonance much more

involved, needing in general numerical analysis for finding the way the scalar fields depend

on the extra dimensions. However, by neglecting gravity effects, in this work we show that

is possible to implement a first-order formalism to describe topological defects generated

by scalar fields with pure radial dependence. Consequently, we analyze the effects in the

trapping of spin-0 fields due to the higher codimension of the topological defect.

This paper is presented in the following way: in section 2 we consider the general fist-

order formalism for a (D, 1)-dimensional flat spacetime where M≥ 1 scalar fields depend

radially on p spatial dimensions, with 2 ≤ p ≤ D − 2. In section 3 we consider the general

treatment of localization of spin-0 particles in p-balls. Next we apply the formalism of

sections 2 and 3 for a certain number of specific cases. Then, in sections 4, 5 and 6 we

consider defects formed respectively by one, two and three field models, looking for some

aspects of localization of a spin-0 field in each system, and numerically investigating the

occurrence of bound states and resonance effects. Our main conclusions concerning to

a comparative analysis of the influence of p, D and M on the number and intensity of

resonances are presented in section 7.

2 General formalism for constructing p-balls in (D, 1) dimensions

We start with the action

S =

∫
dtdDx

(M∑
i=1

1

2
∂αφ

i∂αφi − V (φ1, . . . , φM)

)
(2.1)

with α = 0, . . . , D. The (D, 1)-dimensional cartesian coordinates will be separated in

D − p-dimensions (x1, x2, . . . , xD−p) where the fields can be located and the remaining p

transverse dimensions (xD−p+1, . . . , xD), with 2 ≤ p ≤ D − 2, where the defect will be

formed.

The potential is chosen to be

V (φ1, . . . , φM) =
1

2rN

M∑
i=1

(
Wφi

)2
, (2.2)
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where we have used a simplified notation:

Wφi =
∂W

∂φi
, Wφiφj =

∂2W

∂φi∂φj
, (2.3)

and so on. The explicit dependence of the potential on r, where

r =

√√√√ D∑
i=D−p+1

(xi)2, (2.4)

follows closely and generalizes forM scalar fields the construction of refs. [54, 55], initially

motivated for avoiding the Derrick-Hobart’s theorem [70]–[72]. We also suppose that the

scalar fields φi depend only on r.

The equations of motion for the scalar fields read

�φi +
1

rN

M∑
j=1

WφjWφjφi = 0, i = 1, . . . ,M, (2.5)

and the ones describing static solutions are

∇2φi =
1

rN

M∑
j=1

WφjWφjφi , i = 1, . . . ,M, (2.6)

where ∇2 is the p-dimensional Laplacian, defined by

∇2φi =
1

rp−1

d

dr

(
rp−1dφ

i

dr

)
. (2.7)

The energy density is given by

ρ(r) =
1

2

M∑
i=1

[(
∇φi

)2
+

1

rN
(
Wφi

)2]
, (2.8)

and the total energy of the defect in the transverse volume is

E =

∫
dxD−p+1 . . . dxD ρ(r). (2.9)

2.1 The first-order formalism

In order to describe the system via first-order differential equations, we implement the BPS

formalism such that the total energy can be written as

E =
2πp/2

Γ(p/2)

1

2

M∑
i=1

∫
dr rp−1

[(
dφi

dr
∓ 1

rN/2
Wφi

)2

± 2

rN/2
dφi

dr
Wφi

]
. (2.10)

By setting as null the squared term we get the set of first-order differential equations

dφi

dr
= ± 1

rN/2
Wφi , i = 1, . . . ,M, (2.11)
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whose solutions we label as φi±(r). Whenever these first-order equations are satisfied and

using (2.3), the total energy reads

E = ± 2πp/2

Γ(p/2)

M∑
i=1

∫
dr rp−1 1

rN/2
dW

dr
. (2.12)

At this point we observe the integrand can be transformed in a total derivative whether

N = 2p− 2. In this way the BPS energy reads

EBPS =
2πp/2

Γ(p/2)
|W (r →∞)−W (r = 0)|, (2.13)

and from eq. (2.11) the corresponding BPS equations read

dφi

dr
= ± 1

rp−1
Wφi , i = 1, . . . ,M. (2.14)

A similar result about parameter N can be obtained by considering scaling properties of

the scalar fields in the energy density (2.9). Firstly, we define the vectors ~φ = (φ1, . . . , φM)

and ~r = (xD−p+1, . . . , xD). We make the scaling transformation ~r → λ~r and ~φ(~r)→ ~φ(λ~r),

corresponding to a change in the energy given by E → Eλ, and impose (∂Eλ)/(∂λ)|λ=1 = 0.

This leads to the following restrictions on N and p: i) for p = 1, N = 0; ii) for p = 2,

N = 2. Additionally by imposing the equality of the gradient and potential parts of E, we

get iii) for p ≥ 3, N = 2p − 2. A similar result was previously found in [54], for the case

where D = p.

A specific model can be constructed in order to have at least two sets {φ̄i} of vacua

satisfying ∂V/∂φk
∣∣
{φi}={φ̄i} = 0 and ∂2V/(∂φk∂φj)

∣∣
{φi}={φ̄i} > 0, for k, j = 1, . . . ,M,

with V (φ̄1, φ̄2, . . . , φ̄M) = 0. Two of these sets {φ̄i0} and {φ̄i∞} corresponding to r = 0 and

r = ∞, respectively. Consequently, the field configurations at r = 0 obey limr→0 φ
i =

φ̄i0, limr→0
dφi

dr = 0 and the superpotential W (r = 0) = limr→0W (φ1, φ2, . . . , φM) =

W (φ̄1
0, φ̄

2
0, . . . , φ̄

M
0 ) is fixed. Similarly, at infinity, the fields satisfy limr→∞ φ

i = φ̄i∞,

limr→∞
dφi

dr = 0 and W (r → ∞) = limr→∞W (φ1, φ2, . . . , φµ) = W (φ̄1
∞, φ̄

2
∞, . . . , φ̄

µ
∞), is

fixed too. In other words, the specific model must have at least one field interpolating

between two different vacuum states. That is, φ̄i0 6= φ̄i∞, for at least one value of i. Thus,

the energy EBPS given by eq. (2.13) is fixed and it becomes a true topological BPS bound.

2.2 Topological charge

The topological character of the solutions
{
φi±
}

can be demonstrated following closely

ref. [54], with the difference that there one has p = D. For (1, 1)-dimensions we have M
conserved currents jiµ = εµν∂νφ

i, with µ = 0, 1 and i = 1, . . . ,M. This results in M
conserved quantities σi = dφi/dx, such that ρ =

∑
i(σ

i)2 is the energy of the field con-

figuration [73]. This can be used to define the topological charge QT =
∫∞
−∞ dxρ = ∆W

as also the total energy of the solution. However, for the class of defects described here

one must be in (D, 1)-dimensions with D ≥ 4, with the scalar fields depending on p ≥ 2

spatial dimensions. For the minimum case, with D = 4 and p = 2 we have M cur-

rent tensors jiµ1µ2 = εµ1µ2µ3∂µ3φ
i, where each µ1, µ2, µ3 can assume the values 0, 1, 2.
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We have ∂µ1j
iµ1µ2 = 0. For each scalar field this gives the set of two conserved den-

sities σik1 = ji0k1 , where k1 = 1, 2. The scalar quantity ρ = σik1σ
ik1 = ji0k1j

i0k1 =

εi0k1k2ε
i0k1k3∂k2φi∂k3φ

i = −
∑

i(dφ
i/dr)2 can be used to define the topological charge as

QT =
∫
d~rρ = −Ω∆W , which coincides with the energy of the defect in the transverse

volume. Finally for general (D, 1)-dimensions with p ≥ 2 transverse dimensions, we have

M current tensors jiµ1µ2...µp = εµ1µ2...µpµp+1∂µp+1φ
i with ∂µ1j

iµ1µ2...µp = 0. This gives, for

each scalar field, the set of p conserved densities σik1k2...kp−1 = ji0k1k2...kp−1 . The scalar

quantity ρ = σik1k2...kp−1σ
ik1k2...kp−1 = (−1)p(p − 1)!

∑
i(dφ

i/dr) leads to the topological

charge QT =
∫
d~rρ = (−1)p(p− 1)!Ωp∆W , which coincides with the energy density of the

defect in the transverse volume.

Note that the presence of ∆W in QT reveals the topological character of the defects, in

the sense that they connect the sectors characterized by two different topological indices,

namely, the time-independent values of {φ̄i0} (related to W (r = 0)) and {φ̄i∞} (related

to W (r → ∞)). These sectors are topologically unconnected in the sense that the fields

cannot be disturbed continuously without violating the requirement of finite energy [72].

Therefore, we have shown the system (2.6) admits topological solutions obtained from the

set of self-dual equations (2.14) which minimize the system energy (2.9).

2.3 Stability under radial perturbations

In the following we show that the solutions
{
φi±(r)

}
are stable under radial and time-

dependent fluctuations. For such a purpose, we follow the procedure realized in ref. [74]

for domain walls with two scalar fields. Thus, we construct the functions

φk(r, t) = φk±(r) +
∑
n

ηkn(r)eiωnt, k = 1, . . . ,M. (2.15)

By substituting it in eq. (2.5) and keeping only linear terms in the fluctuations ηkn(r), we get

(
−∇2 +

1

r2p−2
M
)
ηn = ω2

nηn, (2.16)

where we have defined the matrix M and the eigenvector ηn by

M =


Vφ1φ1 Vφ1φ2 . . . Vφ1φM

Vφ2φ1 Vφ2φ2 . . . Vφ2φM

...
... . . .

...

VφMφ1 VφMφ2 . . . VφMφM

 , ηn =


η1
n

η2
n

...

ηMn

 . (2.17)

We have verified that

1

r2p−2
M = ±dG

dr
± p− 1

r
G + G2. (2.18)

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
1
3
5

In this section, upper and lower signals are for, respectively, BPS solutions φi± of eq. (2.14).

Also we have defined the matrix G

G =
1

rp−1


Wφ1φ1 Wφ1φ2 . . . Wφ1φM

Wφ2φ1 Wφ2φ2 . . . Wφ2φM

...
... . . .

...

WφMφ1 WφMφ2 . . . WφMφM

 . (2.19)

Now this in eq. (2.16) leads to the useful factorization

Â±B̂±ηn = ω2
nηn, (2.20)

where the operators are defined as

Â± = −1
d

dr
∓G− (p− 1)

r
1 (2.21)

and

B̂± = 1
d

dr
∓G. (2.22)

Note that, for one scalar field (i.e., M = 1), this factorization differs from the presented in

ref. [54]. The advantage is that now one can verify explicitly that these operators are such

that Â†± = B̂±. That is, in p spatial dimensions,∫
drrp−1(Â±ψ)†ψ =

∫
drrp−1ψ†B̂±ψ, (2.23)

provided we impose the boundary condition

rp−1ψ†ψ|∞r=0 = 0, (2.24)

a condition valid if ψ are square-integrable bound states (not scattering states). From this

analysis we can rewrite eq. (2.20) as

B̂†±B̂±ηn = ω2
nηn, (2.25)

which means that the ω2
n are eigenvalues of a non-negative operator B̂†±B̂±. This proves

that negative eigenvalues are absent and that the p-balls which satisfy the set of first-order

equations given by eq. (2.14) are stable. The lowest bound state is given by the zero-mode,

identified as B̂±ηn = 0, which gives ηin = cWφi for theM components of ηn, where c is the

normalization constant, such that ∫
drrp−1η†nηn = 1. (2.26)

Further, note that the presence of an explicit dependence with r in Â± and its absence in

B̂± (compare eqs. (2.21) and (2.22)) introduces an asymmetry necessary for the condition

Â†± = B̂± to be valid. In this way there is an extension of the usual symmetric form of

factorization for problems with p = 1, the (1, 1)-dimensional kink being an archetype (see

eq. (3.5) from ref. [74]). Specific factorizations of the Hamiltonian where also attained in

other contexts, for instance for quantum systems with position-dependent masses [75].

– 6 –
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2.4 Stability under angular perturbations

As a further point we can show that the solutions φi±(r) are stable with respect to angular

perturbations. For this purpose we construct the function [76, 77]

φk(t, r, ϕ, θ1, . . . , θp−2) = φ±(r) +
∑
n

αnjη
k
n(r)Y(ϕ, θ

1, . . . , θp−2)ei$nt, k = 1, . . . ,M.

(2.27)

where αnj are constants, Y(ϕ, θ
1, . . . , θp−2) are the generalized spherical harmonics in p-

dimensions and  is related to the angular momentum eigenvalues (for more details see

section 3). By substituting it in eq. (2.5) and keeping only linear terms in the fluctuations

ηkn(r), we get [
B̂†±B̂± +

1

r2
(+ p− 2)

]
ηn = $2

nηn, (2.28)

with B̂†± = Â± and Â± and B̂± are given by eqs. (2.21) and (2.22). The second operator

above can be written as

Ĉ†Ĉ =
1

r2
(+ p− 2), (2.29)

with Ĉ = Ĉ† =

√
(+p−2)

r . Thus the equation for fluctuations becomes(
B̂†±B̂± + Ĉ†Ĉ

)
ηn = $2

nηn. (2.30)

On the other hand, we have already proven that B̂†B̂ is a non-negative operator with

eigenfunction {ηn} and eigenvalues {ω2
n}. Now by taking the scalar product of (2.30) with

ηn, it follows that $2
n is always positive,

$2
n = ω2

n + ‖Cηn‖2 > 0. (2.31)

However, from linear algebra we known that a self-adjoint operator with positive eigenvalues

is a positive-definite one [78]. In this way, the equation for fluctuations described by the

positive-definite operator B̂†±B̂±+ Ĉ†Ĉ possess positive eigenvalues $2
n. This implies that

the defect is stable under general angular perturbations.

2.5 General aspects of the radial solutions

Now let us turn to the searching for explicit solutions for the dependence in the radial

dimension of the scalar fields. A convenient way to solve eq. (2.14) is to make a change of

variables dξ = 1/rp−1dr, or equivalently

ξ(r) = ln(r/r0), p = 2 (2.32)

or

ξ(r) =
1

p− 2

(
− 1

rp−2
+

1

rp−2
0

)
, p = 3, 4, . . . . (2.33)

This coordinate transformation turns eq. (2.14) into

dφ

dξ
= Wφ. (2.34)

– 7 –
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After solving this equation for φ(ξ), and back to r variable, explicit expressions for the

scalar field and energy density can be easily attained. Now to form a topological defect

one must chose a function W (φ1, φ2, . . . φp) with W (r → ∞) 6= W (r = 0). A convenient

choice is a field φi with a kink-like pattern in r around a finite value r0 and the remaining

other fields φj , j 6= i with kink or bell-shape pattern around the same value of r. In a

terminology from the literature we could say the field φi forms the defect whereas the other

fields are responsible for its internal structure.

3 Localization of Spin-0 particles in p-Balls

As we saw, from the D+ 1 spacetime dimensions, the topological defect lives in p of them.

Now we want to consider how a spin-0 particle living in the full D+1-dimensional spacetime

can be effectively trapped by the topological defect in a form of bound or resonant states.

Then we consider a scalar field Φ in a region where it is formed a radial defect constructed

with the M scalar fields φi. In the present analysis we neglect the backreaction on the

topological defect by considering that the interaction between the scalar fields is sufficiently

weak in comparison to the self-interaction that generates the defect. In the following, we

designate Φ as the weak field and φi, i = 1, 2, . . . ,M, the strong ones. We write the

following action describing the system as

S1 =

∫
dtdDx

(
1

2
∂βΦ∂βΦ− η

2
F (φ1, . . . , φp)Φ2

)
, (3.1)

with β = 0, 1, . . . , D. Here F (φ1, . . . , φp) is the coupling between the weak field Φ and the

topological defect. The equation of motion of the scalar field Φ is

∂µ∂
µΦ−∇2

TΦ + ηF (φ1, . . . , φp)Φ = 0, (3.2)

where in the former expression we decomposed the D + 1-dimensional d’Alembertian

between the D − p transverse dimensions and the p transverse dimensions. That is

∂µ∂
µ = �, with µ = 0, . . . , D − p and ∇2

T is a p-dimensional Laplacian. Now considering

that the strong fields φ1, . . . , φp depend only in the radial direction, we have a coupling

F (φ1, . . . , φp) = F (r). We restrict our discussion to functions F (r) finite for all values of

r, with η limr→0 F (r) = 0.

We decompose the scalar field Φ as

Φ(t, x1, x2, . . . , xD) =
∑
n

ξn(t, x
1, . . . , xD−p)ςn,(r)Y(ϕ, θ

1, . . . , θp−2) =
∑
n

Φn, (3.3)

where  is related to the angular momentum eigenvalue. Here we have changed the trans-

verse coordinates (xD−p+1, . . . , xD) from the cartesian to the generalized spherical coordi-

nates (r, ϕ, θ1, . . . , θp−2), with r defined previously and

ϕ = tan−1(xD−p+2/xD−p+1) (3.4)

θ1 = tan−1

(√
(xD−p+1)2 + (xD−p+2)2/xD−p+3

)
(3.5)
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. . . (3.6)

θp−2 = tan−1

(√
(xD−p+1)2 + . . .+ (xD−1)2/xD

)
. (3.7)

The p-dimensional Laplacian is given by

∇2
T =

1

rp−1
∂r(r

p−1∂r)−
1

r2
L̂2
p, (3.8)

where L̂p is the p-dimensional angular momentum operator, given by (we set θ1 = θ, θ2 = w

to ease notation)

L̂2
2 = −∂2

ϕ, (3.9)

L̂2
3 = −

[
1

sin2 θ
∂2ϕ+

1

sin θ
∂θ(sin θ∂θ)

]
, (3.10)

L̂2
4 = − 1

sin2w

[
∂w(sin2w∂w) +

1

sin2 θ
∂2
ϕ +

1

sin θ
∂θ(sin θ∂θ)

]
. (3.11)

In general, for p ≥ 3 we have

L̂2
p = −

 p∑
i=2

 p∏
j=i+1

1

sin2 θj

 1

sini−2 θi
∂θi(sin

i−2 θi∂θi)

 . (3.12)

Now the field ξn(t, x
1, . . . , xD−p) satisfies the (D−p)+1-dimensional Klein Gordon equation(

� +M2
n

)
ξn(t, x

1, . . . , xD−p) = 0, (3.13)

and the amplitude ςn(r) satisfies the radial Schrödinger-like equation

−ς ′′n(r)−
p− 1

r
ς ′n(r) + Vsch(r)ςn(r) = M2

nςn(r), (3.14)

with the Schrödinger potential given by

Vsch(r) =
(+ p− 2)

r2
+ ηF (r). (3.15)

By requiring that eq. (3.14) defines a self-adjoint differential operator in r∈ [0,+∞), the

Sturm-Liouville theory establishes the orthonormality condition for the components ςn,(r)∫
dr rp−1ςn′(r)ςn(r) = δnn′ . (3.16)

The spherical harmonics of degree  satisfy (see ref. [79] for a general treatment of spherical

harmonics with general number of dimensions)

L̂2
pY(ϕ, θ

1, . . . , θp−2) = (+ p− 2)Y(ϕ, θ
1, . . . , θp−2) (3.17)

and are polynomials of degree  with variables restricted to the unit (p− 1)-sphere, which

satisfy the orthonormality condition∫
Sp−1

Y′(ϕ, θ
1, . . . , θp−2)Y(ϕ, θ

1, . . . , θp−2) = δ′ , (3.18)

which means that spherical harmonics of different orders are orthogonal. Given a particular

value of p, eq. (3.17) is solved by separation of variables. Some examples are
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• For p = 2,  ≡ m = 0, 1, 2, . . . and Ym = eimϕ. This means that Ym is associated

with the eigenvalue m2 and carries angular momentum m. The index m labels the

irreducible representations of SO(2).

• For p = 3,  ≡ ` = 0, 1, 2, . . . and Y`(ϕ, θ) =
∑`

m=−` Y`m(ϕ, θ), with Y`m(θ, ϕ) =

Θ`m(θ)Ψm(ϕ). Here Ψm(ϕ) = eimϕ and Θ`m(θ) satisfies the following differential

equation

cot θ
dΘ(θ)

dθ
+
d2Θ(θ)

dθ2
+

(
`(`+ 1)− m2

sin2 θ

)
Θ(θ) = 0. (3.19)

This means that Y`m is associated with the eigenvalue `(` + 1) and carries angular

momentum
√
`(`+ 1). The index ` labels the irreducible representations of SO(3)

whereas m labels the corresponding representations of the subgroup SO(2). For each

` there are 2` + 1 linearly independent spherical harmonics corresponding to the

various values of m. Therefore the irreducible representations of SO(3) based on Y`m
are (2`+ 1) dimensional [80].

For the general case, the irreducible representations of SO(p) based on hyperspherical

harmonics have dimension given by [81]

dim =
(p+ 2− 2)(p+ − 3)!

!(p− 2)!
(3.20)

and we have an orthonormal set of hyperspherical harmonics which have extra indices that

are labels of the irreducible representations of the following chain of subgroups of SO(p):

SO(p) ⊃ SO(p− 1) . . . ⊃ SO(2). (3.21)

Let us illustrate how this works with one more example. The generalization for even larger

values of p demands additional work but is straightforward.

• For p = 4 an orthonormal set of hyperspherical harmonics have extra indices that are

labels of the irreducible representations of the following chain of subgroups of SO(4):

SO(4) ⊃ SO(3) ⊃ SO(2). (3.22)

We have Y(ϕ, θ, w) =
∑

`=0

∑`
m=−` Y`m(ϕ, θ, w), with the following specific con-

structions:

i)  = 0 =⇒ dim = 1. Then ` = 0,m = 0 which gives Y`m = Y0,0,0.

ii)  = 1 =⇒ dim = 4. Then if ` = 0 then m = 0. If ` = 1 then m = 0,±1. This

gives the four possibilities for Y`m.

iii)  = 2 =⇒ dim = 9. Then if ` = 0 then m = 0. If ` = 1 then m = 0,±1. If

` = 2 then m = 0,±1,±2. This gives the nine possibilities for Y`m.

iv) In general, given , we have ` = 0, 1, . . . ,  (+ 1 possibilities) and m = −`, . . . , `
(2`+ 1 possibilities), resulting in dim = (+ 1)2 possible constructions for Y`m.
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One can make the decomposition Y`m = W`(w)Y`m(θ, ϕ), where Y`m(θ, ϕ) are the

usual spherical harmonic described in the p = 3 case, and W`(w) satisfies the fol-

lowing differential equation

2 cotW ′`(w) +W ′′`(w)− `(`+ 1)W`(w) = (+ 1)W`(w), (3.23)

where prime means derivative with respect to the argument.

Now the action given by the eq. (3.1) can be integrated in the (xD−p+1, . . . , xD) di-

mensions to give

S1 =

∫
dtdx1 . . . dxD−p

(
1

2
∂µΦn∂

µΦn −M2
nΦ

2
n

)
, (3.24)

which shows that Φn is a massive (D−p+1)-dimensional Klein-Gordon field with mass Mn.

In order to investigate numerically the massive states, firstly we consider the region near

the origin (r � r0). Since we are considering only functions ηF (r) finite, the Schrödinger-

like potential for  = 0 reads

− ς ′′n0(r)− p− 1

r
ς ′n0(r) =

(
M2
n0 − V (0)

)
ςn0(r), (3.25)

where V (0) = limr→0 ηF (r), whose nonsingular solution at r = 0 is

ςn0(r) = r1− p
2J p

2
−1

(
r
√
M2
n0 − V (0)

)
. (3.26)

On the other hand, for  ≥ 1 the Schrödinger-like potential is dominated by the

contribution of the angular momentum proportional to 1/r2,

Vsch(r) =
(+ p− 2)

r2
, r � r0

and the nonsingular solutions in r = 0 are given by

ς(0)
n (r) = r1− 1

2
pJ[ 12 (2+p−2)](Mnr),  ≥ 1. (3.27)

Both functions (3.26) and (3.27) are used as an input for the numerical method. From

this approximation we can calculate ς(rmin) and dς/dr(rmin), to be used for the Runge-

Kutta method to determine ς(r) from the Schrödinger-like equation. We define the proba-

bility for finding scalar modes with mass Mn and angular momentum inside the p-ball of

radius r0 as [61]

P =

∫ r0
rmin

dr rp−1 |ςn(r)|2∫ rmax

rmin
dr rp−1 |ςn(r)|2

,

where rmin � r0 is used as the initial condition and rmax is the characteristic box length

used for the normalization procedure, being a value where the Schrödinger potentials are

close to zero and where the massive modes ς(r) oscillate as planes waves. Resonances are

characterized by peaks in the plots of P as a function of Mn. The thinner is a peak, the

longer is the lifetime of the resonance.
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This finishes the part of the general formalism. In the remaining of this work we will

solve some specific examples with one, two and three scalar fields.

The number of parameters involved in the models considered here led us to make some

restrictions in order to better identify the effect of the number of transverse dimensions

for the occurrence of bound and/or resonant states. For instance, we have identified that

an increasing in  reduces the possibility of the occurrence of bound states. Case  = 0

is special, since in this case we have limr→0 Vsch(r) is finite or even zero, in opposition to

limr→0 Vsch(r) = ∞ for  ≥ 1. Then without loosing generality we have chosen to study

states with  = 0 and  = 2.

4 A one-field model

In this section we will consider the model [54]

Wφ(φ) = λ

(
φ(q−1)/q − φ(q+1)/q

)
, (4.1)

with q = 1, 3, 5 . . .. The first-order equation, described by eq. (2.34), has solution given by

φ(ξ) = tanhq(λξ/q). (4.2)

The case q = 1 corresponds to the usual kink solution of the φ4 model in the variable ξ.

Back to r variable, explicit expressions for the scalar field and energy density can be easily

attained:

φ(r) = tanhq(ηp), (4.3)

ρ(r) =
λ2

r2p−2
tanh2q−2(ηp) sech4(ηp),

with

ηp =
λ

q
ξ(r) (4.4)

with ξ(r) given by eq. (2.32), for p = 2 or (2.33), for p = 3, 4, . . ..

Figure 1 shows plots of φ(r) for fixed λ, r0 and several values of q and p. The scalar

field φ(r) interpolates between −1 and φc, with i) φc = 1 for either q = 1 or p = 2 and ii)

φc = tanhq[λ/(q(p − 2)rp−2
0 )] for q > 1 and p 6= 2. For q 6= 1 the larger is p, the lower is

φc. We note from the figure that the φ(r) configurations is now of two kinks connected at

r = r0 with a flat region around r0 that grows with q. The internal kink runs from r = 0

to r = r0 and has a compacton character whereas the external kink goes from r = r0 to

r →∞ and is a semi-compacton. As p increases we see that the internal kink (for r < r0)

has its thickness reduced whereas the external kink (for r > r0) has its thickness increased.

Figure 2 shows plots of the radial energy density ρ(r) for fixed λ, r0 and several values

of q ≥ 2 and p. From the figures we see that the energy density is characterized by two

peaks: a higher and thinner one, centered at r < r0 and a lower and thicker one, centered

at r > r0. The distance between the peaks grows with q, enlarging the region around

r = r0 where ρ ∼ 0, at the price of reducing the height of the peaks. For fixed q, the

– 12 –
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Figure 1. A one-field model for p-balls in (D, 1)-dimensions: function φ(r). We fix r0 = 1, λ = 30.

We have a) p = 2, b) p = 3 and c) p = 4. Curves are for q = 1 (black), 3 (red), 5 (green) and

7 (blue).

Figure 2. A one-field model for p-balls in (D, 1)-dimensions: function ρ(r). We fix r0 = 1, λ = 30.

We have a) p = 2, b) p = 3 and c) p = 4. Curves are for q = 3 (black), 5 (red), 7 (green) and

9 (blue).

effect of the increasing of p is an increasing of height and thinness of the peak at r < r0

and a corresponding decreasing of the peak at r > r0. The energy density for q = 1 is

characterized for a peak centered around r = r0, and does not depend sensibly on p. Here

we will consider the coupling F (φ) = φ2, corresponding to the Schrödinger-like potential

V =
(+ p− 2)

r2
+ η tanh2q(ηp), p = 2, 3, . . . . (4.5)

Figure 3 shows some plots for V (r) for fixed values of p, r0,  and several values of

q, η and λ. We note that the potentials are strictly positive, with V (r → 0) = ∞ and a

minimum around r = r0. The structure of the potential shows that there are possibly bound

states, to be investigated numerically. Comparing figures 3a–c we see that the increasing

of q or the decreasing of λ enlarges the region around the local minimum, favoring the

appearance of bound states. In addition, the increasing of η turns the minimum deeper,

also favoring bound states. This is confirmed with the eigenvalues obtained numerically,

presented in table 1.
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Figure 3. A one-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials V for  = 2,

r0 = 1, p = 2 and q = 1 (black line), q = 3 (blue dotted line), q = 5 (brown dashdotted line), q = 7

(green longdashed line). Plots are for a) η = 30, λ = 100, b) η = 30, λ = 30 and c) η = 100, λ = 30.

Figure 4. A one-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials V for r0 = 1,

p = 2, q = 5 and  = 0 (black line),  = 2 (blue dotted line),  = 4 (brown dashdotted line),  = 6

(green longdashed line). Plots are for a) η = 30, λ = 100, b) η = 30, λ = 30 and c) η = 100, λ = 30.

Figure 4 shows some plots for V (r) for fixed values of p, r0, q and several values of λ,

η and λ. This figure shows that, for fixed parameters, an increasing in  decreases the

possibility of occurrence of bound states. This is confirmed from the results of tables 1

and 2. The case  = 0 is special since there is no possibility of resonances. For larger values

of , there is an increasing of a local maximum around r = r0, increasing the possibility of

occurrence of resonant states.

Figure 5 shows V (r) for fixed values of η, λ, r0,  and several values of q and p. Com-

paring figures 5a–c we see that, for fixed parameters, the increasing of p reduces the value

of V (r → ∞). On the other hand this occurs simultaneously with the enlargement of the

region around the local minimum (more evident for larger q). Concerning to the influence

for the occurrence of bound states, the former character reduces the probability whereas

the latter increases it. Then there is a competition between both effects. In particular

figure 5c shows that for q = 7 and p = 6 the minimum of the potential disappears and

there is no possibility of bound states. This signals that for large values of q (i.e., q ∼ 7),
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Figure 5. A one-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials V for  = 2,

r0 = 1, η = 100, λ = 30 and p = 2 (black line), p = 3 (blue dotted line), p = 4 (brown dashdotted

line), p = 5 (green longdashed line) and p = 6 (red dashed line). Plots are for a) q = 3, b) q = 5

and c) q = 7.

intermediate values of p are better for obtaining more bound states. This analysis is con-

firmed from table 2, which shows that, for q = 5 the occurrence of bound states is more

frequent for p = 4 and p = 5 whereas for q = 7 this occurs for p = 3 and p = 4.

5 A two-field model

In this section we will consider the model

W (φ, χ) = λ

(
φ− 1

3
φ3 − sφχ2

)
. (5.1)

With this choice of W , the potential Ṽ (φ, χ) = (1/2)(W 2
φ +W 2

χ) was introduced in ref. [82]

to construct Bloch walls. The limit s → 0.5 turns the two-field problem into a one-field

one, recovering the model of an Ising wall. This can be better seen in the explicit solutions

φ(ξ) and χ(ξ) bellow. The equation of motion for the scalar fields, eq. (2.14), is rewritten,

after a change of variables dξ = 1/rp−1dr, as

dφ

dξ
= Wφ, (5.2)

dχ

dξ
= Wχ, (5.3)

with solution

φ(ξ) = tanh(2λsξ), (5.4)

χ(ξ) =

√
1

s
− 2 sech(2λsξ). (5.5)
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q = 1 q = 3 q = 5 q = 7 n

j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2

η = 30, λ = 100 — — 28.6227 — 24.8245 29.0266 20.5476 24.8500 1

η = 30, λ = 30
29.4788 — 19.5224 23.8051 11.4668 15.5708 7.1019 10.9721 1

— — — — — — 22.9866 27.0932 2

η = 100, λ = 30

90.8870 95.2469 41.9699 46.0534 20.1460 24.1420 11.2155 15.0803 1

— — — — 66.4764 70.7870 40.1402 44.4125 2

— — — — 99.3950 — 73.4681 77.6431 3

— — — — — — 95.9278 98.6800 4

Table 1. A one-field model for p-balls in (D, 1)-dimensions: eigenvalues M2
n, solutions of eq. (3.14)

for  = 0 and  = 2. We fix r0 = 1, p = 2, with q, λ and η of Schrödinger potentials for  = 2

corresponding to figures 3 and 4.

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 n

j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2

q = 3
41.9699 46.0534 41.5186 47.4958 40.6852 48.4558 39.4634 48.9136 37.8409 48.8321 35.8017 48.1530 1

— — 99.779 — 97.8555 — 93.7645 — 87.0198 — 77.3044 — 2

q = 5

20.1460 24.1420 19.3599 24.9835 17.9279 24.9191 15.8604 23.8675 13.1655 21.6049 9.8750 — 1

66.4764 70.7870 62.7023 68.2819 55.8200 62.1088 45.5658 51.7269 31.8084 36.0979 — — 2

99.39.50 — 93.7420 97.2674 81.3528 85.2906 61.7843 65.0786 — — — — 3

— — — — 91.2896 92.9968 67.7097 68.9111 — — — — 4

q = 7

11.2155 15.0803 10.2061 15.2934 8.4188 14.1784 5.9333 11.3420 2.9698 — — — 1

40.1402 44.4125 35.3980 40.5926 26.9721 32.1424 15.0591 18.0844 — — — — 2

73.4681 77.6431 61.9651 66.2717 42.8930 46.5882 19.0888 — — — — — 3

95.9278 98.6800 81.1822 84.3789 53.5926 56.0433 — — — — — — 4

— — 91.9072 93.7907 60.0097 61.5195 — — — — — — 5

— — 96.7928 97.4313 — 64.5802 — — — — — — 6

Table 2. A one-field model for p-balls in (D, 1)-dimensions: eigenvalues M2
n, solutions of eq. (3.14)

for  = 0 and  = 2. We fix r0 = 1, η = 100, λ = 30, with p and q of Schrödinger potentials for

 = 2 corresponding to figure 5.

Back to r variable, explicit expressions for the scalar field profiles and consequently for the

energy density can be easily attained. We have, for p ≥ 2,

φ(r) = tanh(τp), (5.6)

χ(r) =

√
1

s
− 2 sech(τp), (5.7)

ρ(r) =
(2λs)2

r2p−2
sech4(τp)

{
1 +

(
1

s
− 2

)
sinh2(τp)

}
.

where

τp = 2λsξ(r) (5.8)

and ξ(r) given by eq. (2.32), for p = 2 and by eq. (2.33), for p = 3, 4, . . ..
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Figure 6 shows plots of φ(r) and χ(r) for fixed λ, r0 and several values of s and

p. The scalar field φ(r) interpolates between −1 and φc , with φc = 1 for p = 2 and

φc = tanh[2λs/((p − 2)rp−2
0 )] for p 6= 2. The scalar field χ(r) interpolates between zero

and χc, with χc = 0 for p = 2 and χc =
√

(1/s)− 2 sech[2λs/((p − 2)rp−2
0 )] for p 6= 2.

Starting from p = 2, the larger is p, the lower is φc and the larger is χc. This means that

with the increasing of p the φ(r) and χ(r) configurations are, respectively, more departed

from a usual kink and lump configurations in r, centered at r = r0. Comparing figures 6a

and 6b we see that, for all other parameters fixed, larger values of s make the profiles of

φ(r) almost indistinguishable from a thin kink-like defect centered at r = r0. We have also

verified that larger values of λ turn the defect thinner and turn φc and χc closer to 1 and

0, recovering the kink and lump profiles for φ(r) and χ(r), respectively.

Figure 7 shows plots of the energy density ρ(r) for fixed λ, r0 and several values of

s for p = 2, 3, 4 and 8. From figure 7a we see that for p = 2 the behavior of the energy

density changes from a lump centered in r = 0
(
s = 1

2λ

)
to a high peak centered around

r0 (s = 0.5). Comparing figures 7a–d we see that the peaks for s ' 0.5 do not depend on

the number p of transverse dimensions. However, for lower values of s the behavior of ρ(r)

changes sensibly. Indeed, for small s the lump centered at r = 0 occurs only for p = 2.

For p ≥ 3 there appears a broad peak for centered at a 0 < r < r0. The larger is p, the

higher and thinner is this peak. For p ≥ 6 the peak for small s turns to be the higher in

comparison to those occurring for larger values of s. Figure 7d shows this effect for p = 8.

The influence of λ on the energy density can be seen in figure 8 for p = 2. Note that the

increase of λ turns the energy density more centered around r = r0. At the same time this

reduces the relative maximum of the energy density for lower values of s in comparison to

the higher ones. We noted a similar behavior with the variation of λ for p = 3.

In the following we will consider separately the couplings F1(χ) = χ2 and F2(φ, χ) =

(φχ)2. The corresponding Schrödinger-like potentials are

V1 =
(+ p− 2)

r2
+ η

(
1

s
− 2

)
sech2(τp), p = 2, 3, . . . (5.9)

V2 =
(+ p− 2)

r2
+ η

(
1

s
− 2

)
tanh2(τp) sech2(τp), p = 2, 3, . . . . (5.10)

Figure 9 shows some plots for V1(r) and V2(r) for fixed values of η, λ, r0,  and several

values of p. For all values of p the potentials are strictly positive. Also, for p = 2 we have

V1(r → ∞) = 0 and V2(r → ∞) = 0, showing that bound states are absent. For p ≥ 3

we have V1(r → ∞) = ηF1(φc, χc) 6= 0 and V2(r → ∞) = ηF2(φc, χc) 6= 0 and one can

investigate the existence of bound states.

First of all we consider the case  = 2. For the potentials shown in figure 9, and also for

higher values of p, the existence of bound states was investigated and some results could

be found according to table 3. For s = 0.06 and s = 0.1 we could not find bound states for

neither V1 nor V2 when p = 2, 3, 4. Bound states start to appear for p ≥ 5 for s = 0.06 and

p ≥ 7 for s = 0.1. The results show that lower values of s are better for the occurrence

of bound states. As explained above, s → 0.5 recover a one-field φ model. Then, the
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Figure 6. A two-field model for p-balls in (D, 1)-dimensions: functions φ(r) (kink-like, solid lines)

and χ(r) (lump-like, traced lines). We fix r0 = 1, λ = 30. We have a) s = 0.06 and b) s = 0.1.

Curves are for p = 2 (black), 3 (red), 4 (green) and 5 (blue).

Figure 7. A two-field model for p-balls in (D, 1)-dimensions: energy density ρ(r) for r0 = 1 and

λ = 30, s = 1/60 (black line), s = 0.03 (blue dotted line), s = 0.1 (brown dash dotted line), s = 0.3

(green longdash line), s = 0.5 (red dashed line). Plots are for a) p = 2, b) p = 3, c) p = 4 and

d) p = 8.
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Figure 8. A two-field model for 2-balls in (D, 1)-dimensions: energy density ρ(r) for r0 = 1, p = 2

and s = 1/60 (black line), s = 0.03 (blue dotted line), s = 0.1 (brown dash dotted line), s = 0.3

(green longdash line). Plots are for a) λ = 30, b) λ = 50 and c) λ = 100.

Figure 9. A two-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials V1(r) (left)

and V2(r) (right) for  = 2 , r0 = 1, η = 30, λ = 30 and p = 2 (black line), p = 3 (blue dotted line),

p = 4 (brown dash dotted line), p = 5 (green longdash line). Plots are for s = 0.06 and s = 0.1.
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Figure 10. A two-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials a) V1(r)

(left) and b) V2(r) (right) for  = 2, r0 = 1, η = 100, λ = 30, s = 0.06 and p = 2 (black line), p = 3

(blue dotted line), p = 4 (brown dash dotted line), p = 5 (green longdash line).

presence of a second scalar field χ contributes to trapping spin-0 particles. In other words,

p-balls with more internal structure are more able to trap scalar particles. Also, for fixed

s and larger number p of transverse dimensions, bound states occur with larger masses

for potential V1 than for potential V2. This shows that, for a trapping mechanism, the

quadratic coupling χ2 is better that the quartic one φ2χ2. Moreover, a multidimensional

p-ball with larger p is a better trapping mechanism, as V1(r → ∞) and V2(r → ∞) grows

with p. This is confirmed in table 3. Indeed, the larger is p, the greater is the number

of bound states. Also, the asymptotic values V1(r → ∞) and V2(r → ∞) grow with λ

and η. This signals that in order to grow the probability for the occurrence of bound

states one must have η, λ � 1 and decrease the ratio λ/η. This can be seen in figure 10

where λ/η = 3/10 (compare with figure 9 where λ/η = 1). Corresponding eigenvalues are

described in table 4. From the results for λ = 30 we see that for λ/η = 3/10 and s = 0.06

there occur bound states for p ≥ 4 (compare with the results of table 3 for λ/η = 1 where

bound states appear for p ≥ 4).

Now note that the potentials for coupling F1 are characterized by a local maximum at

r = r0 whereas for F2 there is a local minimum at r = r0 surrounded by two local maxima.

The higher local peak for V1 in comparison to the two local ones for V2 suggests that, with

the same set of parameters, resonant states are most probable with quadratic coupling F1

than with quartic coupling F2. This is in accord to the behavior of couplings concerning to

the occurrence of bound states. We also see that the height of the local maxima grows with

the decreasing of s, favoring the appearance of resonances. Then we expect the presence

of a second scalar field χ to be important for the increasing in the number and lifetime of

resonances. We also found that for all other parameters fixed, the best choice for reducing

the asymptotical value of V1 and simultaneously increasing the difference between the local

maxima and minima is to keep η, λ � 1 and increase the ratio λ/η. This can be seen

in figure 11, for λ/η = 10/3 (compare with figure 9, where λ/η = 1 and with figure 10,

where λ/η = 3/10). However, this occurs at the price of making the barrier thinner. Then
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Figure 11. A two-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials a) V1(r)

(left) and b) V2(r) (right) for  = 2, r0 = 1, η = 30, λ = 100, s = 0.06 and p = 2 (black line), p = 3

(blue dotted line), p = 4 (brown dash dotted line), p = 5 (green longdash line).

V s p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 n

j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2

V1 0.06

— — — — 18.4988 — 16.9502 65.5898 15.9269 68.9682 15.1955 72.4943 1

— — — — — — 66.3794 — 62.7636 149.3757 60.0992 153.8414 2

— — — — — — — — 137.6105 — 132.5581 254.5088 3

— — — — — — — — — — 228.5419 — 4

V1 0.10
— — — — — — 13.3597 — 12.9701 — 12.6690 61.0235 1

— — — — — — — — — — 50.0838 — 2

V2 0.06

— — — — 17.6796 — 16.0810 57.2498 14.9927 58.2993 14.1899 59.1008 1

— — — — — — 51.6688 71.1128 49.2798 73.4513 47.0188 75.5898 2

— — — — — — 68.0193 — 65.5464 — 63.4274 — 3

— — — — — — — — 108.7936 — 100.9167 — 4

V2 0.10
— — — — — — 11.9547 — 11.4910 — 11.1174 48.1639 1

— — — — — — — — — — 38.0263 — 2

Table 3. A two-field model for p-balls in (D, 1)-dimensions: eigenvalues M2
n, solutions of eq. (3.14)

for  = 0 and  = 2. We fix r0 = 1, η = 30, λ = 30, with Schrödinger potentials for  = 2

corresponding to figure 9.

we expect that an increasing of λ/η increases the chances for getting a larger number of

resonances, but with lower lifetimes.

The influence of the variation of the angular momentum  can be seen in figure 12,

where we present some plots for the potential V1. The potentials for  ≥ 1 are characterized

by a local minimum and local maximum whose separation decreases with . This signals

that the increasing of  reduces the possibility of occurrence of bound and resonant states.

Case  = 0 is special since we have V1 = 0 at r = 0, being the case with highest possibility

for occurrence of such states. Concerning to bound states this is confirmed from the results

of tables 3 and 4, where one can compare cases  = 0 and  = 2. Then former analysis and

conclusions of the Schrödinger potential and bound states made for  = 2 also apply for
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Figure 12. A two-field model for p-balls in (D, 1)-dimensions: Schrödinger potentials V1(r) for a)

p = 2, b) p = 5, c) p = 7 and r0 = 1, η = 30, λ = 30, s = 0.06,  = 0 (black line),  = 2 (blue dotted

line),  = 4 (brown dash dotted line),  = 6 (green longdash line).

V p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 n

j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2 j = 0 j = 2

V1

— — — — 21.5827 72.5884 19.3059 74.4329 17.8608 77.1262 16.8559 80.2321 1

— — — — 84.3439 166.9563 76.1917 166.9618 70.8185 168.9305 67.0053 171.9820 2

— — — — — — 167.7651 285.8629 157.0522 286.6631 149.2038 289.1227 3

— — — — — — 289.9211 427.9080 273.7365 427.8130 261.4261 429.7415 4

— — — — — — 438.2871 — 417.4132 589.5117 400.9835 591.3007 5

— — — — — — — — 584.4205 — 564.7141 770.9510 6

— — — — — — — — — — 749.3110 — 7

V2

— — — — 21.3410 71.6610 19.0653 73.3757 17.6114 75.8862 16.5924 78.7597 1

— — — — 82.9807 127.0889 74.9047 127.4501 69.5199 127.3683 65.6502 126.8865 2

— — — — 119.3195 — 117.8118 163.8790 115.8253 165.8453 113.3861 168.7750 3

— — — — — — 164.1016 273.4499 153.9482 272.8946 146.5262 270.4678 4

— — — — — — 273.8062 310.4326 259.9589 300.8025 248.3106 290.6058 5

— — — — — — 304.4750 — 290.8448 — 275.0988 339.6651 6

— — — — — — — — 359.1479 — 332.6537 — 7

— — — — — — — — — — 345.4081 — 8

Table 4. A two-field model for p-balls in (D, 1)-dimensions: eigenvalues M2
n, solutions of eq. (3.14)

for  = 0 and  = 2. We fix r0 = 1, η = 100, λ = 30, s = 0.06, with Schrödinger potentials for  = 2

corresponding to figure 10.

general values of . Similar analysis for potential V2 leads to the same conclusion: lower

values of  are favored for occurrence of bound and resonant states.

Now we will consider specifically the effect of the number of longitudinal and transverse

dimensions on the resonance effect. For the couplings F1 and F2, λs ≥ 1/2 and  ≥ 1 the

potentials Vsch for r � r0 are dominated by the contributions of the angular momentum

proportional to 1/r2,

V (r) ≈ (+ p− 2)

r2
, (5.11)

and the nonsingular solutions in r = 0 are given by eq. (3.27), used for calculating the

relative probability P .
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Figure 13. A two-field model for p-balls in (D, 1)-dimensions: (p− 1) + P as a function of M for

coupling F1(χ) (left) and F2(φ, χ) (right) for  = 2, r0 = 1, η = 30, λ = 30, and p = 2 (black line),

p = 3 (blue dotted line), p = 4 (brown dash dotted line), p = 5 (green longdash line). The plots

are for s = 0.06 and s = 0.1, and correspond to potentials of figure 9.

Figure 13 depicts P (rescaled for ease comparison) as a function of Mn ≡ M for

several values of p and s, corresponding to the Schrodinger-like potentials of figure 9.

The plots show several peaks of resonances, followed by a plateau for larger masses where

P = r0/rmax. From the figure we note that lower masses correspond to thinner peaks,

or longer-lived resonances. The low-mass resonances are more difficult to be obtained nu-

merically, due to the requirement of a larger number of digits of precision. Comparing

figures 13a and 13c or figures 13b and 13d we see that lower values of s correspond to a

larger number of resonance peaks. In addition, the peak separation is reduced for lower

values of s. This shows that small values of s are more effective for attaining resonances.

The effect of the increasing in the number of extra dimensions p is a displacement of the

peak positions for larger masses, keeping the mass separation between the peaks almost

unaltered. Figures 13b and 13d shows the resonance peaks for coupling F2(φ, χ). Compar-

ing this with figures 13a and 13c (related to F1(χ)), we see that for coupling F2(φ, χ) the

number and masses of resonances is strongly reduced in comparison to the case of coupling

F1(χ). Indeed, even for s = 0.06, figure 13b shows a pair of neighbor peaks, with only one
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Figure 14. A two-field model for p-balls in (D, 1)-dimensions: (p− 1) + P as a function of m for

coupling F1(χ) (left) and F2(φ, χ) (right) for  = 2, r0 = 1, η = 30, λ = 100, s = 0.06 and p = 2

(black line), p = 3 (blue dotted line), p = 4 (brown dash dotted line), p = 5 (green longdash line).

The plots correspond to potentials of figure 11.

with relative probability close to one. The sequence of almost equally spaced peaks present

for coupling F1(χ) (corresponding to figure 13a) is now absent. This shows that coupling

F2(φ, χ) is less effective for the occurrence of resonances.

Figure 14 shows some resonance peaks corresponding to η = 30 and λ = 100. Compar-

ing with figures 13, we note that the resonances observed are more easy to be numerically

obtained, but also thicker, meaning lower lifetimes. This is in accord with the analysis of

the influence of the ratio λ/η for the Schrodinger-like potentials.

Concerning to the angular sector of the decomposition of the weak scalar field, the

number of extra dimensions is the key point. In the remaining of this section we will

consider separately some specific choices of the number D of spatial dimensions up to

D = 5. The procedure for larger values of D is straightforward.

5.1 p-balls in (3, 1)-dimensions

The simplest choice is to consider p-balls in (3, 1)-dimensions. In this case the only pos-

sibility is to construct a radial defect with p = 2 spatial dimensions. This is a tube-like

defect and has already been studied by us in refs. [56, 57]. Requiring ρ(r) finite in r = 0

restricts the parameters to satisfy λs ≥ 1/2 when λ > 1. For large values of λ, there exists

a value s0 so that for 1
2λ < s < s0, the effect of the field χ is stronger and the defect

appears as a thick tube structure whose center is localized between the origin and r0. The

decomposition of the weak scalar field Φ(t, x1, x2) is

Φ(t, x1, r, ϕ) =
∑
n`

ξn`(t, x
1)ςn,`(r)Y(ϕ), (5.12)

where the spherical harmonic is Y`(ϕ) = ei`ϕ and ςn,`(r) satisfies a (2, 1)-dimensional Klein-

Gordon equation.
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5.2 p-balls in (4, 1)-dimensions

In this case we have two possibilities: i) to construct a radial defect with p = 2 spatial

transverse dimensions and (2, 1) longitudinal dimensions, or ii) to construct a radial de-

fect with p = 3 spatial transverse dimensions and (1, 1) longitudinal dimensions. In the

following we will consider these two possibilities separately.

5.2.1 p-balls in (4, 1)-dimensions with p = 2 transverse dimensions

The defect is characterized by a potential which generates, respectively, kink-like and lump-

like solutions for the scalar fields φ(r) and χ(r), as well as energy density T00(r) with

the same profile found for the case analyzed in section 5.1 for (3, 1)-dimensions. This is

expected since we have the same number (two) of transverse dimensions. All would follow

the same as in section 5.1: the decomposition of the spherical harmonics Y`, Schrödinger-

like potentials Vsch and relative probabilities P . The difference is that in the present

case of (4, 1)-dimensions we have (2, 1) longitudinal dimensions. This is reflected in the

longitudinal part ξn` of the decomposition of the weak scalar field Φ(t, x1, x2),

Φ(t, x1, x2, r, ϕ) =
∑
n`

ξn`(t, x
1, x2)ςn,`(r)Y`(ϕ), (5.13)

which now satisfy a (2, 1)-dimensional Klein-Gordon equation.

5.2.2 p-balls in (4, 1)-dimensions with p = 3 transverse dimensions

The defect is a 3-dimensional sphere. For larger values of λ and s, the defects looks like

as a thin ball centered around r0 and the field φ has stronger contribution to the energy

density. On the other hand, when we have larger values of λ and lower values of s are

formed peaks between origin and r0, which results in higher contribution of the χ field and

the defect has a thicker structure. The spherical harmonic is Y`(ϕ, θ) =
∑`
−` Y`m(ϕ, θ).

5.3 p-balls in (5, 1)-dimensions

In this case we have three possibilities: i) to construct a radial defect with p = 2 spatial

transverse dimensions and (3, 1) longitudinal dimensions. The procedure for the transverse

dimensions is analogous to section 5.1, with the exception that now the longitudinal part ξn`
of the decomposition of the weak scalar field Φ satisfy a (3, 1)-dimensional Klein-Gordon

equation; ii) to construct a radial defect with p = 3 spatial transverse dimensions and

(2, 1) longitudinal dimensions. The results for the transverse dimensions is analogous to

section 5.2.2, with the exception that now the longitudinal part ξn` of the decomposition of

the weak scalar field Φ satisfy a (2, 1)-dimensional Klein-Gordon equation; iii) to construct

a radial defect with p = 4 spatial transverse dimensions and (1, 1) longitudinal dimensions.

6 A three-field model

In this section we will consider some three-field models. The numerical analysis of bound

and resonant states follows the same prescription done in the two previous sections and we
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will not pursue in this direction here, focusing mainly in the analysis of the Schrödinger-like

potentials. We start with a simple extension of the previous model, given by [83]

W (φ, χ, σ) = λ

(
φ− 1

3
φ3 − sφ(χ2 + σ2)

)
, (6.1)

where s is a real parameter. The equation of motion for the scalar fields, eq. (2.14) is

rewritten, after a change of variables dξ = 1/rp−1dr, as

dφ

dξ
= Wφ, (6.2)

dχ

dξ
= Wχ, (6.3)

dσ

dξ
= Wσ. (6.4)

One solution connecting the minima (±1, 0, 0) of the potential is [83]

φ(ξ) = tanh(2λsξ), (6.5)

χ(ξ) =

√
1

s
− 2 cos(ϑ) sech(2λsξ), (6.6)

σ(ξ) =

√
1

s
− 2 sin(ϑ) sech(2λsξ). (6.7)

with 0 ≤ s ≤ 0.5 and 0 ≤ ϑ < 2π, where now ϑ is a new parameter of the model. Back to

r variable, explicit expressions for the scalar field profiles and consequently for the energy

density can be easily attained. We have, for p ≥ 2,

φ(r) = tanh(τp), (6.8)

χ(r) =

√
1

s
− 2 cos(ϑ) sech(τp), (6.9)

σ(r) =

√
1

s
− 2 sin(ϑ) sech(τp), (6.10)

ρ(r) =
(2λs)2

r2p−2
sech4(τp)

{
1 +

(
1

s
− 2

)
sinh2(τp)

}
.

with τp given by eq. (5.8). One can interpret the φ field as forming a host hypersphere,

with the fields χ and σ giving its internal structure. The balancing of the internal fields is

given by the parameter s. We can also consider the real scalar fields χ and σ as the real

and imaginary part of a complex scalar field ζ, with the model given by

W (φ, ζ) = λ

(
φ− 1

3
φ3 − sφ|ζ|2

)
. (6.11)

A simple coupling is F3 = |ζ|2 = (χ2 + σ2). The explicit solutions χ(r), σ(r) shows that

this coupling recovers the results obtained for F1(χ) from section 5. Another coupling is
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F4 = aφ2 + b1χ
2 + b2σ

2, with a, b1, b2 > 0. Cases a = b2 = 0, b1 = 1 or a = 0, b1 = b2 = 1

recover coupling F1. For coupling F4, the Schrödinger-like potential is

V4 =
(+ p− 2)

r2
+ ηa tanh2(τp) + ηb

(
1

s
− 2

)
sech2(τp), p = 2, 3, . . . , (6.12)

with b = b1 cos2(ϑ) + b2 sin2(ϑ). Figure 15 shows potential V4 for p = 3, p = 4 and several

values of parameters a, b. From the figure we see that a parameter b 6= 0, a = 0 results

in a local maximum around r = r0 that increases with b. With b 6= 0, a value a 6= 0

contributes to a small enlargement of the peak of V4 around r = r0. For b = 0, a 6= 0

the local maximum disappears and only bound states are possible. The analysis shows

that a parameter b 6= 0 (meaning a quadratic coupling with fields χ or σ) is crucial for the

occurrence of resonances. Also a quadratic coupling with field φ is of secondary importance,

when compared with the effect of similar couplings with the other two fields that form the

defect. A quadratic coupling with only the φ field has no effect concerning to resonances.

This illustrates the importance of the secondary fields χ, σ that give to the defect an internal

structure. Comparing figures 15a and 15b we see that for p = 3 we have more possibility

for resonant states in comparison to p = 4. The increasing of V4(r → ∞) with p shows

that an intermediate value of p is better for attaining bound states, in a similar conclusion

achieved in section 4 for one-field models. For p = 2 the potential V4 is a monotonically

decreasing function, and there is neither bound nor resonant states.

Other couplings can be considered, but to further illustrate the generality of the con-

struction of p-balls, here we choose to consider another model, restricted to a Z2 × Z2

symmetry in the χ and σ axis [83]:

W (φ, χ, σ) = λ

(
φ− 1

3
φ3 − sφ(χ2 + σ2) + rgσ2

)
. (6.13)

For s > 0 and −1 < g < 1 the corresponding potential V (φ, χ, σ) has six minima given by

(in units of ξ)

v1,2 = (±1, 0, 0), (6.14)

v3,4 =

(
0,±

√
1

s
, 0

)
, (6.15)

v5,6 =

(
g, 0,∓

√
1

s
(1− g2)

)
. (6.16)

For s 6= 0 the only solution connecting the minima v1,2 is the one-field limit given by

χ = σ = 0 and φ(ξ) = tanh(ξ). Nontrivial solutions for the three scalar fields can be

obtained connecting minima v3,4 to v5,6 and are given, with sg2 = 1, by [83]

φ(ξ) =
g

2
(1 + tanh(ξ/g)), (6.17)

χ(ξ) = ±1

2

√
1

s
(1− tanh(ξ/g)), (6.18)

σ(ξ) = ±1

2

√
1

s
(1− g2)(1 + tanh(ξ/g)). (6.19)
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Figure 15. Schrödinger potential V4 for  = 2, r0 = 1, η = 30, λ = 30, s = 0.06 and a = 0, b = 2

(black line), a = 0, b = 1 (blue dotted line), a = 1, b = 1 (brown dash dotted line), a = 1, b = 0

(green longdash line), a = 2, b = 0 (red dashed line). Plots are for p = 3 (left) and p = 4 (right).

Figure 16. 2-balls in (D, 1)-dimensions for three scalar fields: functions φ(r) (black solid lines),

χ(r) (red traced lines) and σ(r) (green dashdotted lines). We fix r0 = 1 and λ = 30 and couplings

sg2 = 1. We have s = 1.01 (thinner lines), s = 5 and s = 10 (thicker lines).

Back to r variable, and for p ≥ 2, we can obtain the following expressions for the scalar

fields:

φ(r) =
g

2
(1 + tanh(ξ(r)/g)), (6.20)

χ(r) = ±1

2

√
1

s
(1− tanh(ξ(r)/g)), (6.21)

σ(r) = ±1

2

√
1

s
(1− g2)(1 + tanh(ξ(r)/g)), (6.22)

with ξ(r) given by eq. (2.32), for p = 2 or (2.33), for p = 2, 3, . . . .

Figure 16 shows plots of φ(r), χ(r) and σ(r) for p = 2 and fixed λ, r0 and several

values of s. From the figure we see that all the three fields have a kink-like structure
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Figure 17. p-balls in (D, 1)-dimensions for three scalar fields: functions φ(r) (black solid lines),

χ(r) (red traced lines) and σ(r) (green dashdotted lines). We fix r0 = 1 and λ = 30, s = 2 and

sg2 = 1. We have p = 2 (thinner lines), p = 4 and p = 8 (thicker lines).

around r = r0. Note that an increasing in s (and correspondingly a decreasing in g) results

in a thinner defect. The same effect occurs with the increasing of p, as can be seen from

figure 17. For coupling F5 = aφ2 + b1χ
2 + b2σ

2, with a, b1, b2 > 0, the Schrödinger-like

potential is

V5 =
(+ p− 2)

r2
+ ηa

g2

4
(1 + tanh(ξ(r)/g))2

+ ηb
1

4

1

s
(1− tanh(ξ(r)/g))2 + ηc

1

4

1

s
(1− g2)(1 + tanh(ξ(r)/g))2, p = 2, 3, . . . ,

(6.23)

which can also be investigated for possible occurrence of bound and resonant states.

7 Remarks and conclusions

In this work we introduced p-balls as topological defects in (D, 1) dimensions constructed

with M≥ 1 scalar fields which depend radially on only 2 ≤ p ≤ D− 2 spatial dimensions.

Such defects are characterized by an action that breaks translational invariance and are

inspired on the physics of a brane with D − p extra dimensions and p transverse spatial

dimensions. After presenting the general formalism, we have found BPS solutions living in

the p transversal dimensions and proved their stability. In order to analyze the localization

of a scalar field Φ (named a weak field because we can neglect backreaction effects) in

D − p + 1-dimensions, we have considered a general coupling between the weak field and

the scalars fields generating the topological defect. Our results have shown the existence of

bound and/or resonant states which were addressed after a convenient decomposition of the

weak scalar field in D−p+1-dimensional spin-0 modes and its respective amplitudes in the

transverse p-dimensions. As usual the spin-0 modes satisfy a D− p+ 1 dimensional Klein-

Gordon equation whereas the amplitudes are decomposed in an angular part in terms of the

generalized spherical harmonics and a radial part satisfying a Schrödinger-like equation.
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We have particularized our analysis to the class of models where the p-balls are formed

with one, two and three scalar fields. For the class of one-field models we have considered a

region of parameters where a larger number of bound states are formed. It is characterized

for p-balls with larger internal structure (large q), intermediate number of extra dimensions

3 < p < 5, lower energy (lower coupling λ) and higher coupling parameter η. The two-field

models resemble the Bloch brane model where we have considered two type of couplings.

A quadratic coupling χ2 is better than the quartic one φ2χ2 concerning to the occurrence

of either bound or resonant states. We have verified the presence of the second scalar

field χ contributes to the increasing of trapping spin-0 particles. In these two-field models,

the larger is p, the greater is the number of bound states, but the number of resonances is

roughly the same. We have also explored some three-field models, finding from the analysis

of the Schrödinger-like potential that in some cases an intermediate value of p is better for

the occurrence of bound states.

Concerning to the influence of , the probability of occurrence of bound states with

 = 0 is higher in comparison to states with larger values of . This was verified numerically.

By qualitative analysis of the Schrödinger potential, we found that the increasing of 

reduces the probability until the disappearing of bound states above a certain cutoff value

∗ of . This is evident for our M = 1 model (see, for example, figure 4b), and also for

ourM = 2 one (see figure 12). The influence of p on ∗ seems to depend on the particular

class of models considered. For instance, forM = 1 we found that ∗ decreases with p. On

the other hand, for M = 2, ∗ grows with p. Note that for p = 2 and M = 2 there are no

bound states.

Also, for resonances the analysis of the Schrödinger potential shows that the behavior

depends on the model. In our one-field model there is no such possibility for  = 0 whereas

the possibility of occurrence of such states is low but grows with the increasing of . On

the other hand for our two-field model the number of resonant states seems to accompany

the tendency of bound states, with a decreasing in number with .

It is worthwhile to observe that we where able to establish a connection between the

number of extra dimensions and the capability of trapping massive states. Such a study

was attained by analyzing qualitatively the Schrodinger-like potentials and by performing

numerical analysis. For all class of models considered, we could identify that initially there

is an increasing of the number of bound states with p. For the one-field model this occurs

up to a certain number of transverse dimensions; in this way there is an optimal number

of transverse dimensions for trapping states. On the other hand, for the two-field model

considered, we have investigated up to p = 7 and the number of bound states always grow

with p, whereas the number of resonances seems to be independent of p. Also we have

confirmed that, for fixed p, the growing of the internal structure of the defect (connected

with larger values of q for the one-field model and smaller values of s in the two-field and

three-field models) lead to an increasing of the number of bound and/or resonance states.

Whether our results represent a general characteristic of the p-balls or the main con-

clusions are results of the particularities of the models here described deserves to be better

understood. Advances in this direction will be reported elsewhere.
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