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Abstract— Fuzzy Frequency Response: Definition and Anal-
ysis for Complex Dynamic Systems is proposed in this paper.
In terms of transfer function, the complex dynamic system is
partitioned into several linear sub-models and it is organized
into Takagi-Sugeno (TS) fuzzy structure. The main contribution
of this approach is demonstrated, from the proposal of a
Theorem, that fuzzy frequency response is a boundary in the
magnitude and phase Bode plots. Low and high frequency
analysis of fuzzy dynamic model is obtained by varying the
frequency ω from zero to infinity.

I. INTRODUCTION

The main task of the control theory is the analysis and
design for complex dynamic systems. In the analysis, the
characteristics or dynamic behaviour of the control system
are determined. In the design, the controllers are obtained to
attend the desired characteristics of the control system from
certain performance criteria. Generally, these criteria may
involve disturbance rejection, steady-state errors, transient
response characteristics and sensitivity to parameter changes
in the plant [1], [2], [3]. Since the real environment may
vary with time or its operating conditions may change with
load and disturbances, the control system must be able to
withstand these variations. The particular property that a
control system must possess in order to operate properly
in this real environment is called robustness. The robust
analysis and control techniques are conveniently examined
in the frequency domain. The frequency response methods
were developed during the period 1930 − 1940 by Harry
Nyquist (1889−1976) [5], Hendrik Bode (1905−1982) [6],
Nathaniel B. Nichols (1914 − 1997) [4] and many others.
Since, frequency response methods are among the most
useful techniques and available to analyse and synthesise the
controllers. In [7], the U.S. Navy obtains frequency responses
for aircraft by applying sinusoidal inputs to the autopilots
and measuring the resulting position of the aircraft while
the aircraft is in flight. In [8], four current controllers for
selective harmonic compensation in parallel Active Power
Filters (APFs) have been compared analytically in terms of
frequency response characteristics and maximum operational
frequency. A complex dynamic system presents uncertainty
and/or nonlinearity in its dynamic behaviour. This paper
proposes the definition of Fuzzy Frequency Response (FFR)
and its application for analysis of complex dynamic systems.
The complex dynamic system is partitioned into several
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linear sub-models and it is organized into Takagi-Sugeno
(TS) fuzzy structure. The main contribution of this approach
is demonstrated, from the proposal of a Theorem, that fuzzy
frequency response is a boundary in the magnitude and
phase Bode plots. Low and high frequency analysis of fuzzy
dynamic model is obtained by varying the frequency ω from
zero to infinity.

The paper is organized as follows: an overview of Takagi-
Sugeno Fuzzy Dynamic Model is first given in Section II.
The definition of fuzzy frequency response is addressed
in Section III. Fuzzy frequency response at low and high
frequencies is analyzed in Section IV. Section V presents
the computational results for fuzzy frequency response of
two complex systems with uncertain and nonlinear dynamic
behaviour, respectively. Final remarks are given in Section
VI.

II. TAKAGI-SUGENO FUZZY DYNAMIC MODEL

The inference system TS, originally proposed in [9],
presents in the consequent a dynamic functional expression
of the linguistic variables of the antecedent. The i

∣∣∣[i=1,2,...,l] -
th rule, where l is the rules numbers, is given by

Rule(i) :

IF x̃1 is F i
{1,2,...,px̃1}|x̃1

AND . . . AND x̃n is F i
{1,2,...,px̃n}|x̃n

THEN yi = fi(x̃) (1)

where the total number of rules is l = px̃1
× . . .× px̃n

. The
vector x̃ = [x̃1, . . . , x̃n]

T ∈ ℜn containing the linguistics
variables of antecedent, where T represents the operator
for transpose matrix. Each linguistic variable has its own
discourse universe Ux̃1 , . . . ,Ux̃n , partitioned by fuzzy sets
representing its linguistics terms, respectively. In i-th rule, the
variable x̃{1,2,...,n} belongs to the fuzzy set F i

{x̃1,...,x̃n} with
a membership degree µi

F{x̃1,...,x̃n}
defined by a membership

function µi
{x̃1,...,x̃n} : ℜ → [0, 1], with µi

F{x̃1,...,x̃n}
∈

{µi
F1|{x̃1,...,x̃n}

, µi
F2|{x̃1,...,x̃n}

, . . . , µi
Fp|{x̃1,...,x̃n}

}, where
p{x̃1,...,x̃n} is the partitions number of the discourse
universe associated with the linguistic variable x̃1, . . . ,
, x̃n. The output of the TS fuzzy dynamic model is a
convex combination of the dynamic functional expressions
of consequent fi(x̃), without loss of generality for the
bidimensional case, as illustrated in Fig. 1, given by Eq. (2).

y(x̃, γ) =
l∑

i=1

γi(x̃)fi(x̃) (2)

where γ is the scheduling variable of the TS fuzzy dynamic
model. The scheduling variable, well known as normalized
activation degree is given by:
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Fig. 1. Fuzzy dynamic model: A TS model can be regarded as a mapping
from the antecedent space to the space of the consequent parameters one.

γi(x̃) =
hi(x̃)
l∑

r=1

hr(x̃)

. (3)

This normalization implies

l∑
k=1

γi(x̃) = 1. (4)

It can be observed that the TS fuzzy dynamic system,
which represents any nonlinear dynamic model, may be
considered as a class of systems where γi(x̃) denotes a
decomposition of linguistic variables [x̃1, . . . , x̃n]

T ∈ ℜn for
a polytopic geometric region in the consequent space from
the functional expressions fi(x̃).

III. FUZZY FREQUENCY RESPONSE (FFR): DEFINITION

This section will present how a TS fuzzy model of
a complex dynamic system responds to sinusoidal inputs,
which in this paper is proposed as the definition of fuzzy
frequency response. The response of a TS fuzzy model to
a sinusoidal input of frequency ω1 in both amplitude and
phase, is given by the transfer function evaluated at s = jω1,
as illustrated in Fig. 2.

 ~
l

i = 1

γ
 i W  (s)

   i

E(s) Y(s)

W (s) = Σ

Fig. 2. TS fuzzy transfer function

For this TS fuzzy model,

Y (s) =

[
l∑

i=1

γiW
i(s)

]
E(s). (5)

Consider W̃ (jω) =
l∑

i=1

γiW
i(jω) a complex number for

a given ω, as

W̃ (jω) =
l∑

i=1

γiW
i(jω) =

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ejϕ(ω) (6)

or

W̃ (jω) =
l∑

i=1

γiW
i(jω) =

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan[
l∑

i=1

γiW
i(jω)

]
. (7)

Then, for the case that the input signal e(t) is sinusoidal,
that is,

e(t) = A sinω1t. (8)

The output signal yss(t), in the steady state, is given by

yss(t) = A

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ sin [ω1t+ ϕ(ω1)] . (9)

As result of the fuzzy frequency response definition, it is
proposed the following Theorem:

Theorem 3.1: Fuzzy frequency response is a region in the
frequency domain, defined by the consequent sub-models and
from the operating region of the antecedent space.

Proof:
Considering that ν̃ is a linguistic variable related to the dy-

namic behaviour of the complex system, it can be represented
by linguistic terms. Once known its discourse universe, as
shown in Fig. 3, the activation degrees hi(ν̃)|i=1,2,...,l are
given by:

hi(ν̃) = µi
Fν̃∗

1

⋆ µi
Fν̃∗

2

⋆ . . . ⋆ µi
Fν̃∗

n
, (10)

where ν̃∗{1,2,...,n} ∈ Uν̃{1,2,...,n} , respectively, and ⋆ is
a fuzzy logic operator. The normalized activation degrees
γi(ν̃)|i=1,2,...,l, are also related to the dynamic behaviour as
follow:
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Fig. 3. Functional description of the linguistic variable ν̃: linguistic terms,
discourse universes and membership degrees.



γi(ν̃) =
hi(ν̃)
l∑

r=1

hr(ν̃)

. (11)

This normalization implies

l∑
k=1

γi(ν̃) = 1. (12)

Let F (s) be a vectorial space with degree l and
f1(s), f2(s), . . . , f l(s) transfer functions which belongs
to this vectorial space. A transfer function f(s) ∈ F (s)
must be a linear convex combination of the vectors
f1(s), f2(s), . . . , f l(s):

f(s) = ξ1f
1(s) + ξ2f

2(s) + . . .+ ξlf
l(s), (13)

where ξ1,2,...,l are the coefficients of this linear con-
vex combination. If the coefficients of the linear convex

combination are normalized

(
l∑

i=1

ξi = 1

)
, the vectorial

space presents a decomposition of the transfer functions[
f1(s), f2(s), . . . , f l(s)

]
in a polytopic geometric shape

of the vectorial space F (s). The points of the poly-
topic geometric shape are defined by the transfer functions[
f1(s), f2(s), . . . , f l(s)

]
. The TS fuzzy dynamic model at-

tends this polytopic property. The sum of the normalized
activation degrees is equal to 1, as shown in Eq. (4). To
define the points of this fuzzy polytopic geometric shape,
each rule of the TS fuzzy dynamic model must be singly
activated. This condition is called boundary condition. In
this way, the following results are obtained for the Fuzzy
Frequency Response (FFR) of the TS fuzzy transfer function:

• If only the rule 1 is activated, it has (γ1 = 1, γ2 =
0, γ3 = 0, . . . , γl = 0):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(14)

W̃ (jω, ν̃) =
∣∣∣1W 1(jω) + 0W 2(jω) + . . .+ 0W l(jω)

∣∣∣ ̸ arctan[
1W 1(jω) + 0W 2(jω) + . . .+ 0W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣W 1(jω)

∣∣ ̸ arctan
[
W 1(jω)

]
. (15)

• If only the rule 2 is activated, it has (γ1 = 0, γ2 =
1, γ3 = 0, . . . , γl = 0):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(16)

W̃ (jω, ν̃) =
∣∣∣0W 1(jω) + 1W 2(jω) + . . .+ 0W l(jω)

∣∣∣ ̸ arctan[
0W 1(jω) + 1W 2(jω) + . . .+ 0W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣W 2(jω)

∣∣ ̸ arctan
[
W 2(jω)

]
. (17)

• If only the rule l is activated, it has (γ1 = 0, γ2 =
0, γ3 = 0, . . . , γl = 1):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(18)

W̃ (jω, ν̃) =
∣∣∣0W 1(jω) + 0W 2(jω) + . . .+ 1W l(jω)

∣∣∣ ̸ arctan[
0W 1(jω) + 0W 2(jω) + . . .+ 1W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣∣W l(jω)

∣∣∣ ̸ arctan
[
W l(jω)

]
, (19)

where W 1(jω),W 2(jω), . . . ,W l(jω) are the
linear sub-models of the complex dynamic system.

Note that
∣∣W 1(jω)

∣∣ ̸ arctan
[
W 1(jω)

]
and∣∣W l(jω)

∣∣ ̸ arctan
[
W l(jω)

]
define a boundary region.

Under such circumstances the fuzzy frequency response
for complex dynamic system converges to a boundary in
the frequency domain. Figure 4 shows the fuzzy frequency
response for the bidimensional case, without loss of
generality.
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IV. FUZZY FREQUENCY RESPONSE (FFR): ANALYSIS

In this section will be analyzed the behavior of the fuzzy
frequency response at low and high frequencies. The idea is
to study the magnitude and phase behavior of the TS fuzzy
dynamic model, when ω varies from zero to infinity.

A. Low Frequencies Analysis

The low frequencies analysis of the TS fuzzy dynamic
model W̃ (s) can be obtained by

lim
ω→0

l∑
i=1

γiW
i(jω). (20)

The magnitude and phase behaviour at low frequencies, is
given by

lim
ω→0

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γiW
i(jω)

]
. (21)

B. High Frequencies Analysis

Equivalently, the high frequencies analysis of the TS fuzzy
dynamic model W̃ (s) can be obtained by

lim
ω→∞

l∑
i=1

γiW
i(jω). (22)

The magnitude and phase behaviour at high frequencies,
is given by

lim
ω→∞

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γiW
i(jω)

]
. (23)

V. COMPUTATIONAL RESULTS

To illustrate the FFR: definition and analysis, as shown in
section III and IV, consider two cases of complex system:

• Complex system with uncertain dynamic behaviour;
• Complex system with nonlinear dynamic behaviour.

A. Uncertain Dynamic System

Consider the following uncertain dynamic system, given
by

H(s, ν) =
Y (s, ν)

U(s)
=

=
2− ν

[(ν + 1)s+ 1]
[(ν

2
+ 0.1

)
s+ 1

] (24)

where the scheduling variable is ν = [0, 1], the gain of the
uncertain dynamic system is Kp = 2 − ν, the upper time
constant is τ = ν + 1 and the lower time constant is τ

′
=

ν

2
+0.1. From the uncertain dynamic system in Eq. (24) and

assuming the time varying scheduling variable in the range
of [0, 1], it can obtain the TS fuzzy dynamic model in the
following operating points:

Sub-model 1 (ν = 0):

W 1(s, 0) =
2

(s+ 1)(0.1s+ 1)
=

2

0.1s2 + 1.1s+ 1
. (25)

Sub-model 2 (ν = 0.5):

W 2(s, 0.5) =
1.5

(1.5s+ 1)(0.35s+ 1)
=

1.5

0.525s2 + 1.85s+ 1
.

(26)

Sub-model 3 (ν = 1):

W 3(s, 1) =
1

(2s+ 1)(0.6s+ 1)
=

1

1.2s2 + 2.6s+ 1
. (27)

The TS fuzzy dynamic model rules base results

Rule(1) : IF ν is 0 THEN W 1(s, 0)
Rule(2) : IF ν is 0.5 THEN W 2(s, 0.5)
Rule(3) : IF ν is 1 THEN W 3(s, 1),

(28)

From Eq. (7) the TS fuzzy dynamic model of the uncertain
dynamic system, Eq. (28), can be represented by

W̃ (jω, ν̃) =

=

∣∣∣∣∣
3∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
3∑

i=1

γi(ν̃)W
i(jω)

]
(29)

So,

W̃ (jω, ν̃) =

=

∣∣∣∣γ1 2

0.1s2 + 1.1s+ 1
+ γ2

1.5

0.525s2 + 1.85s+ 1
+

+γ3
1

1.2s2 + 2.6s+ 1

∣∣∣∣ ̸ arctan

[
γ1

2

0.1s2 + 1.1s+ 1
+

+γ2
1.5

0.525s2 + 1.85s+ 1
+ γ3

1

1.2s2 + 2.6s+ 1

]
(30)

W̃ (jω, ν̃) =∣∣∣∣∣2γ1 0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+



γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

]
(31)

where

Den[W̃ (jω,ν̃)] = 0.1(jω)6 + 1.1(jω)5 + 5.2(jω)4+

+11.2(jω)3 + 11.5(jω)2 + 5.6(jω) + 1 (32)

1) Low Frequencies Analysis: From the TS fuzzy dy-
namic model, Eq. (29), and applying the concepts seen in
the Subsection IV-A, the steady-state response for sinusoidal
input at low frequencies for the uncertain dynamic system
can be obtained as follow:

lim
ω→0

W̃ (jω, ν̃) =∣∣∣∣∣2γ1 0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

]
(33)

As ω tends to zero, (52) can be approximated as follow:

lim
ω→0

W̃ (jω, ν̃) = |2γ1 + 1.5γ2 + γ3| ̸ arctan

[2γ1 + 1.5γ2 + γ3] (34)

Hence

lim
ω→0

W̃ (jω, ν̃) = |2γ1 + 1.5γ2 + γ3| ̸ 0o (35)

Applying the Theorem 3.1, proposed in Section III, the ob-
tained boundary conditions at low frequencies, are presented
in Tab. I. The fuzzy frequency response of the uncertain
dynamic system, at low frequencies, presents a range of
magnitude in the interval [0, 6](dB) and the phase is 0o.

TABLE I
BOUNDARY CONDITIONS AT LOW FREQUENCIES.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)
1 γ1 = 1; γ2 = 0 and γ3 = 0 6.0206 0o

2 γ1 = 0; γ2 = 1 and γ3 = 0 3.5218 0o

3 γ1 = 0; γ2 = 0 and γ3 = 1 0 0o

2) High Frequencies Analysis: Likewise, from the TS
fuzzy dynamic model, Eq. (29), and now applying the con-
cepts seen in the Subsection IV-B, the steady-state response
for sinusoidal input at high frequencies for the uncertain
dynamic system can be obtained as follow:

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣∣2γ1 0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

[
2γ1

0.6(jω)4 + 3.6(jω)3 + 6.5(jω)2 + 4.5(jω) + 1

Den[W̃ (jω,ν̃)]
+

1.5γ2
0.1(jω)4 + 1.6(jω)3 + 4.2(jω)2 + 3.7(jω) + 1

Den[W̃ (jω,ν̃)]
+

γ3
0.1(jω)4 + 0.8(jω)3 + 2.7(jω)2 + 3(jω) + 1

Den[W̃ (jω,ν̃)]

]
(36)

In this analysis, the higher degree terms of the transfer
functions in the TS fuzzy dynamic model increase more
rapidly than the other ones. Thus,

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣2γ1 0.6(jω)40.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

∣∣∣∣ ̸ tg−1

[
2γ1

0.6(jω)4

0.1(jω)6
+ 1.5γ2

0.1(jω)4

0.1(jω)6
+ γ3

0.1(jω)4

0.1(jω)6

]
(37)

Hence

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣2γ1 0.6

0.1(jω)2
+ 1.5γ2

0.1

0.1(jω)2
+ γ3

0.1

0.1(jω)2

∣∣∣∣ ̸ −180o

Again applying the Theorem 3.1, proposed in Section III,
the obtained boundary conditions at high frequencies are
presented in Tab. II. The fuzzy frequency response of the



uncertain dynamic system, at high frequencies, presents a

range of magnitude in the interval
[∣∣∣∣ 1

(jω)2

∣∣∣∣ , ∣∣∣∣ 12

(jω)2

∣∣∣∣] (dB)

and the phase is −180o.

TABLE II
BOUNDARY CONDITIONS AT HIGH FREQUENCIES.

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)
1 γ1 = 1; γ2 = 0 and γ3 = 0

∣∣12/(jω)2∣∣ −180o

2 γ1 = 0; γ2 = 1 and γ3 = 0
∣∣1.50/(jω)2∣∣ −180o

3 γ1 = 0; γ2 = 0 and γ3 = 1
∣∣0.1/(jω)2∣∣ −180o

For comparative analysis, the fuzzy frequency response
(boundaries conditions at low and high frequencies from Tab.
I-II) and frequency response of the uncertain dynamic system
are shown in Fig. 5. For this experiment, the frequency
response of the uncertain dynamic system was obtained
considering the mean of the uncertain parameter ν in the
frequency domain as shown in Fig. 6. It can be seen that
the fuzzy frequency response is a region in the frequency
domain, defined by the consequent linear sub-models W i(s),
from the operating region of the antecedent space, as demon-
strated by the proposed Theorem 3.1. This method highlights
the efficiency of the fuzzy frequency response to estimate the
frequency response of uncertain dynamic systems.
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Fig. 5. Comparative analysis between fuzzy frequency response and
frequency response of the uncertain dynamic system.

B. Nonlinear Dynamic System
Now consider the one-link robotic manipulator shown

in Fig. 7. The dynamic equation of the one-link robotic
manipulator is given by

ml2θ̈ + dθ̇ +mgl sin(θ) = u, (38)

with: m = 1kg, payload; l = 1m, length of the link; g =
9.81m/s2, gravitational constant; d = 1kgm2/s, damping
factor and u, control variable (kgm2/s2).
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Fig. 7. One-link robotic manipulator.

A LPV model can be obtained from nonlinear model in the
Eq. (38) by Taylor series expansion of the nonlinearity sin θ
in some operating points [10]. For the case that ν is close to
ν0, it can be able to ignore the higher-order derivative terms.
Thus

f(ν) ∼= f(ν0) +
df(ν)

dν

∣∣∣∣
ν=ν0

(ν − ν0). (39)

From Eq. (39), the LPV Plant is

ml2θ̈ + dθ̇ +mgl [a+ bθ] = u, (40)

where a = sin ν−ν cos ν; b = cos ν and ν is the schedul-
ing variable that represents the operating point (angle). In
terms of transfer function, it has

H(s, ν) =
Θ(s, ν)

U(s, ν)
=

1

ml2s2 + ds+mgl cos ν
, (41)

where U(s, ν) = U(s) − mgl[sin ν − ν cos ν]. From the
LPV model in Eq. (41) and assuming the dynamics of the



system in the range of [−π/4, π/4], it can obtain the TS
Fuzzy Model choosing some operating points:

Sub-model 1 (ν = θ = −π/4):

W 1(s,−π/4) =
Θ(s,−π/4)

U(s,−π/4)
=

1

s2 + s+ 6.9367
. (42)

Sub-model 2 (ν = θ = 0):

W 2(s, 0) =
Θ(s, 0)

U(s, 0)
=

1

s2 + s+ 9.81
. (43)

Sub-model 3 (ν = θ = +π/4):

W 3(s,+π/4) =
Θ(s,+π/4)

U(s,+π/4)
=

1

s2 + s+ 6.9367
. (44)

The TS fuzzy dynamic model rules base results

Rule(1) : IF ν is −π/4 THEN W 1(s,−π/4)
Rule(2) : IF ν is 0 THEN W 2(s, 0)
Rule(3) : IF ν is +π/4 THEN W 3(s,+π/4),

(45)

Again from Eq. (7) the TS fuzzy dynamic model of the
one-link robotic manipulator, Eq. (45), is given by

W̃ (jω, ν̃) =

=

∣∣∣∣ γ1
(jω)2 + (jω) + 6.9367

+
γ2

(jω)2 + (jω) + 9.81
+

+
γ3

(jω)2 + (jω) + 6.9367

∣∣∣∣ ̸ arctan{
γ1

(jω)2 + (jω) + 6.9367
+

γ2
(jω)2 + (jω) + 9.81

+
γ3

(jω)2 + (jω) + 6.9367

}
(46)

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(47)

where

Den[W̃ (jω,ν̃)] = (jω)4 + 2(jω)3 + 17.7467(jω)2 +

+16.7467(jω) + 68.0490 (48)

1) Low Frequencies Analysis: From the TS fuzzy dy-
namic model, Eq. (29), and applying the concepts seen in
the subsection IV-A, the steady-state response for sinusoidal
input at low frequencies for the one-link robotic manipulator
can be obtained as follow:

lim
ω→0

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(49)

As ω tends to zero, Eq. (52) can be approximated as
follow:

lim
ω→0

W̃ (jω, ν̃) =

∣∣∣∣9.81γ1 + 6.9367γ2 + 9.81γ3
68.0490

∣∣∣∣ ̸ arctan

{
9.81γ1 + 6.9367γ2 + 9.81γ3

68.0490

}
(50)

Hence

lim
ω→0

W̃ (jω, ν̃) = |0.1442γ1 + 0.1019γ2 + 0.1442γ3| ̸ 0o

(51)

Applying the Theorem 3.1, proposed in section III, the ob-
tained boundary conditions at low frequencies, are presented
in Tab. III. The fuzzy frequency response of the one-link
robotic manipulator, at low frequencies, presents a range of
magnitude in the interval [−19.8365;−16.8207](dB) and the
phase is 0o.

TABLE III
BOUNDARY CONDITIONS AT LOW FREQUENCIES

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)
1 γ1 = 1; γ2 = 0 and γ3 = 0 −16.8207 0o

2 γ1 = 0; γ2 = 1 and γ3 = 0 −19.8365 0o

3 γ1 = 0; γ2 = 0 and γ3 = 1 −16.8207 0o



2) High Frequencies Analysis: Likewise, from the TS
fuzzy dynamic model, Eq. (29), and now applying the con-
cepts seen in the subsection IV-B, the steady-state response
for sinusoidal input at high frequencies for the one-link
robotic manipulator can be obtained as follow:

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(52)

In this analysis, the higher degree terms of the transfer
functions in the TS fuzzy dynamic model increase more
rapidly than the other ones. Thus,

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣ (γ1 + γ2 + γ3)

(jω)2

∣∣∣∣ ̸ arctan

{
(γ1 + γ2 + γ3)

(jω)2

}
Hence

lim
ω→∞

W̃ (jω, ν̃) =

∣∣∣∣ (γ1 + γ2 + γ3)

(jω)2

∣∣∣∣ ̸ − 180o

Again applying the Theorem 3.1, proposed in section III,
the obtained boundary conditions at high frequencies are
presented in Tab. IV. The fuzzy frequency response of the
one-link robotic manipulator, at high frequencies, presents

the magnitude of
∣∣∣∣ 1

(jω)2

∣∣∣∣ (dB) and the phase is −180o.

TABLE IV
BOUNDARY CONDITIONS AT HIGH FREQUENCIES

Activated Boundary Condition Magnitude Phase
Rule (dB) (Degree)
1 γ1 = 1; γ2 = 0 and γ3 = 0

∣∣1/(jω)2∣∣ −180o

2 γ1 = 0; γ2 = 1 and γ3 = 0
∣∣1.0/(jω)2∣∣ −180o

3 γ1 = 0; γ2 = 0 and γ3 = 1
∣∣1/(jω)2∣∣ −180o

For comparative analysis, the fuzzy frequency response
(boundaries conditions at low and high frequencies from
Tab. I-II) and frequency response of the one-link robotic
manipulator are shown in Fig. 8.

−80

−70

−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/sec)

ν=−π/4

ν=0

Robotic manipulator

Fig. 8. Comparative analysis between fuzzy frequency response and
frequency response of the one-link robotic manipulator.

VI. CONCLUSIONS

The Fuzzy Frequency Response: Definition and Analysis
for Complex Dynamic Systems is proposed in this paper.
It was shown that the fuzzy frequency response is a region
in the frequency domain, defined by the consequent linear
sub-models W i(s), from operating regions of the complex
dynamic system, according to the proposed Theorem 3.1.
This formulation is very efficient and can be used for robust
control design for complex dynamic systems.
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