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Abstract—A Fuzzy Methodology for Frequency Response Es-
timation of Nonlinear Dynamic Systems is proposed in this
paper. In terms of transfer function, the nonlinear dynamic
system is partitioned into several linear sub-models and it is
organized into Takagi-Sugeno (TS) fuzzy structure. The main
contribution of this approach is demonstrated, from the proposal
of a Theorem, that fuzzy frequency response is a boundary in the
magnitude and phase Bode plots and useful for estimation of the
frequency response of a one-link robotic manipulator. Low and
high frequency analysis of the fuzzy dynamic model is obtained
by varying the frequency ω from zero to infinity.

I. INTRODUCTION

The design of control systems is currently driven by a
large number of requirements posed by increasing competition,
environmental requirements, energy and material costs, the
demand for robust and fault-tolerant systems. These consid-
erations introduce extra needs for effective process control
techniques. In this context, the analysis and synthesis of com-
pensators are completely related to each other. In the analysis,
the characteristics or dynamic behaviour of the control system
are determined. In the design, the compensators are obtained
to attend the desired characteristics of the control system
from certain performance criteria. Generally, these criteria
may involve disturbance rejection, steady-state errors, transient
response characteristics and sensitivity to parameter changes
in the plant [3], [4], [5].

Test input signals is one way to analyse the dynamic be-
haviour of real world system. Many test signals are available,
but a simple and useful signal is the sinusoidal wave form
because the system output with a sinusoidal wave input is also
a sinusoidal wave, but with a different amplitude and phase for
a given frequency. This frequency response analysis describes
how a dynamic system responds to sinusoidal inputs in a range
of frequencies and has been widely used in academy, industry
and considered essential for robust control theory [10].

The frequency response methods were developed during
the period 1930 − 1940 by Harry Nyquist (1889 − 1976)
[9], Hendrik Bode (1905 − 1982) [2], Nathaniel B. Nichols
(1914−1997) [8] and many others. Since, frequency response
methods are among the most useful techniques and available
to analyse and synthesise the compensators. In [1], the U.S.
Navy obtains frequency responses for aircraft by applying
sinusoidal inputs to the autopilots and measuring the resulting
position of the aircraft while the aircraft is in flight. In [6],

four current controllers for selective harmonic compensation
in parallel Active Power Filters (APFs) have been compared
analytically in terms of frequency response characteristics and
maximum operational frequency.

Most real systems, such as circuit components (inductor,
resistor, operational amplifier, etc.) are often formulated using
differential/integral equations with nonlinearities and uncertain
parameters [7]. The nonlinearity about the systems arises from
aging, temperature variations, etc. These variations do not
follow any of the known probability distributions and are most
often quantified in terms of boundaries. The classical methods
of frequency response do not explore these boundaries for
nonlinear dynamic systems. To overcome this limitation, this
paper proposes the definition of Fuzzy Frequency Response
(FFR) and its application for analysis of nonlinear dynamic
systems.

II. FORMULATION PROBLEM

This section presents some essentials concepts for the
formulation and development of this paper.

A. Takagi-Sugeno Fuzzy Dynamic Model

The inference system TS, originally proposed in [11],
presents in the consequent a dynamic functional expression
of the linguistic variables of the antecedent. The i

∣∣∣[i=1,2,...,l] -
th rule, where l is the rules numbers, is given by

Rule(i) :

IF x̃1 is F i
{1,2,...,px̃1}|x̃1

AND . . . AND x̃n is F i
{1,2,...,px̃n}|x̃n

THEN yi = fi(x̃) (1)

where the total number of rules is l = px̃1 × . . . × px̃n . The
vector x̃ = [x̃1, . . . , x̃n]

T ∈ ℜn containing the linguistics
variables of antecedent, where T represents the operator
for transpose matrix. Each linguistic variable has its own
discourse universe Ux̃1

, . . . ,Ux̃n
, partitioned by fuzzy sets

representing its linguistics terms, respectively. In i-th rule, the
variable x̃{1,2,...,n} belongs to the fuzzy set F i

{x̃1,...,x̃n} with
a membership degree µi

F{x̃1,...,x̃n}
defined by a membership

function µi
{x̃1,...,x̃n} : ℜ → [0, 1], with µi

F{x̃1,...,x̃n}
∈

{µi
F1|{x̃1,...,x̃n}

, µi
F2|{x̃1,...,x̃n}

, . . . , µi
Fp|{x̃1,...,x̃n}

}, where



p{x̃1,...,x̃n} is the partitions number of the discourse universe
associated with the linguistic variable x̃1, . . . , , x̃n. The output
of the TS fuzzy dynamic model is a convex combination
of the dynamic functional expressions of consequent fi(x̃)
given by:

y(x̃, γ) =
l∑

i=1

γi(x̃)fi(x̃) (2)

where γ is the scheduling variable of the TS fuzzy dynamic
model. The scheduling variable, well known as normalized
activation degree is given by:

γi(x̃) =
hi(x̃)
l∑

r=1

hr(x̃)

. (3)

This normalization implies

l∑
k=1

γi(x̃) = 1. (4)

It can be observed that the TS fuzzy dynamic system, which
represents any nonlinear dynamic model, may be considered
as a class of systems where γi(x̃) denotes a decomposition
of linguistic variables [x̃1, . . . , x̃n]

T ∈ ℜn for a polytopic
geometric region in the consequent space from the functional
expressions fi(x̃).

III. FUZZY FREQUENCY RESPONSE (FFR): DEFINITION

This section will present how a TS fuzzy model of a
nonlinear dynamic system responds to sinusoidal inputs, which
in this paper is proposed as the definition of fuzzy frequency
response. The response of a TS fuzzy model to a sinusoidal
input of frequency ω1 in both amplitude and phase, is given
by the transfer function evaluated at s = jω1, as illustrated in
Fig. 1.
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Fig. 1. TS fuzzy transfer function

For this TS fuzzy model,

Y (s) =

[
l∑

i=1

γiW
i(s)

]
E(s). (5)

Consider W̃ (jω) =
l∑

i=1

γiW
i(jω) a complex number for a

given ω, as

W̃ (jω) =

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γiW
i(jω)

]
. (6)

Then, for the case that the input signal e(t) is sinusoidal,
that is,

e(t) = A sinω1t. (7)

The output signal yss(t), in the steady state, is given by

yss(t) = A

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ sin [ω1t+ ϕ(ω1)] . (8)

As result of the fuzzy frequency response definition, shown
in Eq. (5)-(8), it is proposed the following Theorem:

Theorem 3.1: Fuzzy frequency response is a region in the
frequency domain, defined by the consequent sub-models and
from the operating region of the antecedent space.

Proof:
Considering that ν̃ is the linguistic variable of the operation

point ν, it can be represented by linguistic terms. Once known
its discourse universe, as shown in Fig. 2, the activation
degrees hi(ν̃)|i=1,2,...,l dependes of the dynamic system and
is given by:

hi(ν̃) = µi
Fν̃∗

1

⋆ µi
Fν̃∗

2

⋆ . . . ⋆ µi
Fν̃∗

n
, (9)

where ν̃∗{1,2,...,n} ∈ Uν̃{1,2,...,n} , respectively, and ⋆ is a
fuzzy logic operator.
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Fig. 2. Functional description of the linguistic variable ν̃: linguistic terms,
discourse universes and membership degrees.

The normalized activation degrees γi(ν̃)|i=1,2,...,l, are also
uncertain:

γi(ν̃) =
hi(ν̃)
l∑

r=1

hr(ν̃)

. (10)

This normalization implies

l∑
k=1

γi(ν̃) = 1. (11)



Let F (s) be a vectorial space with degree l and
f1(s), f2(s), . . . , f l(s) transfer functions which belongs to
this vectorial space. A transfer function f(s) ∈ F (s)
must be a linear convex combination of the vectors
f1(s), f2(s), . . . , f l(s):

f(s) = ξ1f
1(s) + ξ2f

2(s) + . . .+ ξlf
l(s), (12)

where ξ1,2,...,l are the coefficients of this linear convex
combination. If the coefficients of the linear convex com-

bination are normalized

(
l∑

i=1

ξi = 1

)
, the vectorial space

presents a decomposition of the transfer functions
[
f1(s),

f2(s), . . . , f l(s)
]

in a polytopic geometric shape of the vec-
torial space F (s). The points of the polytopic geometric shape
are defined by the transfer functions

[
f1(s), f2(s), . . . , f l(s)

]
.

The TS fuzzy dynamic model attends this polytopic property.
The sum of the normalized activation degrees is equal to 1, as
shown in Eq. (4). To define the points of this fuzzy polytopic
geometric shape, each rule of the TS fuzzy dynamic model
must be singly activated. This condition is called boundary
condition. In this way, the following results are obtained for
the Fuzzy Frequency Response (FFR) of the TS fuzzy transfer
function:

• If only the rule 1 is activated, it has (γ1 = 1, γ2 = 0, γ3 =
0, . . . , γl = 0):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(13)

W̃ (jω, ν̃) =
∣∣1W 1(jω) + 0W 2(jω) + . . .+ 0W l(jω)

∣∣ ̸ arctan[
1W 1(jω) + 0W 2(jω) + . . .+ 0W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣W 1(jω)

∣∣ ̸ arctan
[
W 1(jω)

]
. (14)

• If only the rule 2 is activated, it has (γ1 = 0, γ2 = 1, γ3 =
0, . . . , γl = 0):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(15)

W̃ (jω, ν̃) =
∣∣0W 1(jω) + 1W 2(jω) + . . .+ 0W l(jω)

∣∣ ̸ arctan[
0W 1(jω) + 1W 2(jω) + . . .+ 0W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣W 2(jω)

∣∣ ̸ arctan
[
W 2(jω)

]
. (16)

• If only the rule l is activated, it has (γ1 = 0, γ2 = 0, γ3 =
0, . . . , γl = 1):

W̃ (jω, ν̃) =

∣∣∣∣∣
l∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γi(ν̃)W
i(jω)

]
,

(17)

W̃ (jω, ν̃) =
∣∣0W 1(jω) + 0W 2(jω) + . . .+ 1W l(jω)

∣∣ ̸ arctan[
0W 1(jω) + 0W 2(jω) + . . .+ 1W l(jω)

]
,

W̃ (jω, ν̃) =
∣∣W l(jω)

∣∣ ̸ arctan
[
W l(jω)

]
, (18)

where W 1(jω),W 2(jω), . . . ,W l(jω) are the linear sub-
models of the nonlinear dynamic system.

Note that
∣∣W 1(jω)

∣∣ ̸ arctan
[
W 1(jω)

]
and∣∣W l(jω)

∣∣ ̸ arctan
[
W l(jω)

]
define a boundary region.

Under such circumstances the fuzzy frequency response
for nonlinear dynamic systems converges to a boundary in
the frequency domain. Figure 3 shows the fuzzy frequency
response for the bidimensional case, without loss of generality.
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IV. FUZZY FREQUENCY RESPONSE (FFR): ANALYSIS

A. Low Frequencies Analysis

The low frequencies analysis of the TS fuzzy dynamic
model W̃ (s) can be obtained by

lim
ω→0

l∑
i=1

γiW
i(jω). (19)



The magnitude and phase behaviour at low frequencies, is
given by

lim
ω→0

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γiW
i(jω)

]
. (20)

B. High Frequencies Analysis

Equivalently, the high frequencies analysis of the TS fuzzy
dynamic model W̃ (s) can be obtained by

lim
ω→∞

l∑
i=1

γiW
i(jω). (21)

The magnitude and phase behaviour at high frequencies, is
given by

lim
ω→∞

∣∣∣∣∣
l∑

i=1

γiW
i(jω)

∣∣∣∣∣ ̸ arctan

[
l∑

i=1

γiW
i(jω)

]
. (22)

V. COMPUTATIONAL RESULTS

To illustrate the FFR: definition and analysis, as shown in
section III and IV, it was used the one-link robotic manipulator
shown in Fig. 4. The dynamic equation of the one-link robotic
manipulator is given by

ml2θ̈ + dθ̇ +mgl sin(θ) = u, (23)

where: m = 1kg is the payload; l = 1m is the length
of the link; g = 9.81m/s2 is the gravitational constant;
d = 1kgm2/s is the damping factor; u is the control variable
(kgm2/s2).
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Fig. 4. One-link robotic manipulator.

A LPV model can be obtained from nonlinear model in the
Eq. (23) by Taylor series expansion of the nonlinearity sin θ
in some operating points. For the case that ν is close to ν0, it
can be able to ignore the higher-order derivative terms. Thus

f(ν) ∼= f(ν0) +
df(ν)

dν

∣∣∣∣
ν=ν0

(ν − ν0). (24)

From Eq. (24), the LPV Plant is

ml2θ̈ + dθ̇ +mgl [a+ bθ] = u, (25)

where a = sin ν−ν cos ν; b = cos ν and ν is the scheduling
variable that represents the operating point (angle). In terms
of transfer function, it has

H(s, ν) =
Θ(s, ν)

U(s, ν)
=

1

ml2s2 + ds+mgl cos ν
, (26)

where U(s, ν) = U(s)−mgl[sin ν−ν cos ν]. From the LPV
model in Eq. (26) and assuming the dynamics of the system
in the range of [−π/4, π/4], it can obtain the TS Fuzzy Model
choosing some operating points:

Sub-model 1 (ν = θ = −π/4):

W 1(s,−π/4) =
Θ(s,−π/4)

U(s,−π/4)
=

1

s2 + s+ 6.9367
. (27)

Sub-model 2 (ν = θ = 0):

W 2(s, 0) =
Θ(s, 0)

U(s, 0)
=

1

s2 + s+ 9.81
. (28)

Sub-model 3 (ν = θ = +π/4):

W 3(s,+π/4) =
Θ(s,+π/4)

U(s,+π/4)
=

1

s2 + s+ 6.9367
. (29)

The TS fuzzy dynamic model rules base results

Rule(1) : IF ν is −π/4 THEN W 1(s,−π/4)
Rule(2) : IF ν is 0 THEN W 2(s, 0)
Rule(3) : IF ν is +π/4 THEN W 3(s,+π/4),

(30)

and the TS fuzzy model of the one-link robotic manipulator
is given by

W̃ (s, ν̃) =
3∑

i=1

γi(ν̃)W
i(s). (31)

A comparative analysis, via analog simulation, between the
one-link robotic manipulator given by Eq.(23) and the TS
fuzzy dynamic model given by Eq.(31) can be performed to
validate the TS fuzzy dynamic model. In this analysis, an
impulse input was considered. As shown in Fig. 5, it can be
seen the efficiency of the TS fuzzy dynamic model to represent
the dynamic behaviour of the one-link robotic manipulator in
the time domain.

From Eq. (6) the TS fuzzy dynamic model of the one-link
robotic manipulator can be represented by
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Fig. 5. Validation of the TS fuzzy dynamic model for the one-link robotic
manipulator.

W̃ (jω, ν̃) =

∣∣∣∣∣
3∑

i=1

γi(ν̃)W
i(jω)

∣∣∣∣∣ ̸ arctan

[
3∑

i=1

γi(ν̃)W
i(jω)

]
(32)

or

W̃ (jω, ν̃) =
∣∣γ1W 1(jω,−π/4) + γ2W

2(jω, 0) +

γ3W
3(jω, π/4)

∣∣ ̸ arctan
[
γ1W

1(jω,−π/4) + γ2W
2(jω, 0)+

+γ3W
3(jω, π/4)

]
(33)

and

W̃ (jω, ν̃) =

=

∣∣∣∣ γ1
(jω)2 + (jω) + 6.9367

+
γ2

(jω)2 + (jω) + 9.81
+

+
γ3

(jω)2 + (jω) + 6.9367

∣∣∣∣ ̸ arctan{
γ1

(jω)2 + (jω) + 6.9367
+

γ2
(jω)2 + (jω) + 9.81

+
γ3

(jω)2 + (jω) + 6.9367

}
(34)

W̃ (jω, ν̃) =∣∣∣∣∣γ1[(jω)2 + (jω) + 9.81] + γ2
[
(jω)2 + (jω) + 6.9367

]
Den[W̃ (jω,ν̃)]

+

+
γ3[(jω)

2 + (jω) + 9.81]

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
γ1[(jω)

2 + (jω) + 9.81] + γ2
[
(jω)2 + (jω) + 6.9367

]
Den[W̃ (jω,ν̃)]

+

+
γ3[(jω)

2 + (jω) + 9.81]

Den[W̃ (jω,ν̃)]

}
(35)

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(36)

where

Den[W̃ (jω,ν̃)] = (jω)4 + 2(jω)3 + 17.7467(jω)2 +

+16.7467(jω) + 68.0490 (37)

A. Low Frequencies Analysis

From the TS fuzzy dynamic model, Eq. (32), and applying
the concepts seen in the subsection IV-A, the steady-state
response for sinusoidal input at low frequencies for the one-
link robotic manipulator can be obtained as follow:

lim
ω→0

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(38)

As ω tends to zero, Eq. (38) can be approximated as follow:

lim
ω→0

W̃ (jω, ν̃) =

∣∣∣∣9.81γ1 + 6.9367γ2 + 9.81γ3
68.0490

∣∣∣∣ ̸ arctan

{
9.81γ1 + 6.9367γ2 + 9.81γ3

68.0490

}
(39)



Hence

lim
ω→0

W̃ (jω, ν̃) = |0.1442γ1 + 0.1019γ2 + 0.1442γ3| ̸ 0o

(40)

B. High Frequencies Analysis

Likewise, from the TS fuzzy dynamic model, Eq. (32), and
now applying the concepts seen in the subsection IV-B, the
steady-state response for sinusoidal input at high frequencies
for the one-link robotic manipulator can be obtained as follow:

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣∣ [γ1 + γ2 + γ3](jω)
2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

∣∣∣∣∣ ̸ arctan

{
[γ1 + γ2 + γ3](jω)

2 + [γ1 + γ2 + γ3](jω)+

Den[W̃ (jω,ν̃)]

+
9.81γ1 + 6.9367γ2 + 9.81γ3

Den[W̃ (jω,ν̃)]

}
(41)

In this analysis, the higher degree terms of the transfer
functions in the TS fuzzy dynamic model increase more
rapidly than the other ones. Thus,

lim
ω→∞

W̃ (jω, ν̃) =∣∣∣∣ (γ1 + γ2 + γ3)

(jω)2

∣∣∣∣ ̸ arctan

{
(γ1 + γ2 + γ3)

(jω)2

}
Hence

lim
ω→∞

W̃ (jω, ν̃) =

∣∣∣∣ (γ1 + γ2 + γ3)

(jω)2

∣∣∣∣ ̸ − 180o

Figure 6 shows the fuzzy frequency response characteris-
tics for the one-link robotic manipulator from the proposed
methodology.

VI. CONCLUSION

A fuzzy methodology for frequency response estimation
of nonlinear dynamic systems is proposed in this paper. The
fuzzy frequency response is a region in the frequency domain,
defined by the consequent linear sub-models W i(s), from
operating regions of the nonlinear dynamic system, according
to the proposed Theorem 3.1. This formulation is very efficient
and can be used for robust stability analysis and control design
for nonlinear dynamic systems.
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